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Executive summary 

For the current regulatory period 2022-2026, ACM has used benchmarking techniques to 
determine efficient costs of the Dutch electricity and gas TSOs and DSOs 

The Authority for Consumers and Markets (ACM) is responsible for the regulation of Dutch electricity 
and gas transmission system operators (TSOs) and distribution system operators (DSOs). For the 
current regulatory period 2022-2026, ACM has used the following benchmarking techniques to 
determine the efficient costs of the Dutch electricity and gas TSOs and DSOs: 

■ For TSOs, ACM identified static efficiencies using Data Envelopment Analysis (DEA) in a 
pan-European benchmarking study of TSOs;  

■ For DSOs, ACM identified static efficiencies based on a unit cost analysis of Dutch DSOs. 

For future regulatory periods ACM will likely need to consider the challenges of the energy 
transition and implications from CBb’s ruling for benchmarking analysis 

The energy transition requires new investments. For electricity system operators these investments 
will include additional decentralised generation and demand connection for solar PV, wind, and EVs. 
For the gas system operators these investments will focus on potential gas phase-out and 
repurposing. Benchmarking techniques will likely need to be able to support these future efficient 
investment needs. 

The Dutch Trade and Industry Appeals Tribunal (College van Beroep voor het bedrijfsleven (CBb)) 
has recently made its decision on the appeals lodged by the Dutch TSOs and DSOs against the 
Method Decisions for the period 2022-2026. The CBb has determined that: 

ACM must adjust the way in which the dynamic efficiency of regional grid operators is estimated 
taking into account the impact from new challenges due to the energy transition.  
With regards to the pan-European cost benchmarking study for TSOs, the CBb criticised the lack of 
transparency of data. In addition, the CBb criticised that the cost-benchmark study does not allow 
to identify the source(s) of cost inefficiency. 

Hence, ACM wants to identify benchmarking techniques that could be used in future regulatory 
periods. In particular, ACM asked Frontier Economics to investigate advantages and disadvantages 
of available benchmarking techniques and how they can be used in practice. They also asked us to 
identify and summarise relevant case studies. These case studies can be useful to ACM when 
considering some of the practical aspects of implementing a technique. 
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We identified a short list of benchmarking techniques that can be used to address the 
challenges of the energy transition and implications of CBb’s ruling 

Benchmarking techniques can be classified in three broad groups with different characteristics.  

Descriptive techniques. Descriptive techniques are simple techniques that are used to show how 
inputs and outputs are related. These techniques include unit cost analysis or comparative analysis 
of key characteristics of businesses (e.g. density of supply volumes or connections).  
■ Economic-based techniques (parametric, non-parametric, semi-parametric). Economic-

based techniques include all techniques that are grounded in microeconomic production theory, 
where a cost function links inputs used to outputs produced allowing for an inefficiency 
component and potentially some random noise. Parametric techniques require a priori 
assumptions around the cost function (relationship between costs and cost drivers) and the 
distribution of the inefficiency component. Non-parametric techniques do not require such a 
priori assumptions, but all residual deviation from the frontier is assumed to be inefficiency. 
Semi-parametric techniques usually do not require an assumption on the cost function, but 
require an assumption on the distribution of the error terms. 

■ Engineering-based techniques. Engineering-based models rely more heavily on engineering 
or expert insights to develop an assessment of efficient costs. The methods can either be 
applied to aggregated costs (e.g. Reference Network Analysis) or to disaggregated costs for 
different activities (e.g. process benchmarking) or projects (e.g. engineering assessment). 
Hence, these techniques range in complexity, from simple relationship between cost and cost 
drivers, to more complex models for calculating an ‘optimal network’. 

For each of these groups, first we identified a long list of available techniques from regulatory 
precedent and the academic literature. Then we determined a short list of techniques that can be 
used to address the challenges of the energy transition and the implications of CBb’s ruling by 
applying four evaluation criteria based on ACM’s regulatory context and expected future changes: 
promotion of efficiency, transparency, robustness, applicability. We also consider whether there is 
relevant regulatory precedent for the use of each technique. The table below shows the techniques 
that we have short-listed. 

Group Sub-group Technique 
Descriptive 
technique 

Performance 
indicators 

Partial Performance Indicators (PPIs) 

Mainly based 
on economic 
theory 

Parametric Corrected OLS (COLS), Modified OLS (MOLS) 
Stochastic Frontier Analysis (SFA) 

Non-parametric Data Envelopment Analysis (DEA) 
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Bootstrap DEA 

Semi-parametric Stochastic non-smooth envelopment data (StoNED) 

Mainly based 
on engineering 
rationale 

Engineering 
based 

Engineering models 
Reference Network Analysis (RNA) 

 
 
 

 

Each technique in our short list has strengths and weaknesses 

Our in-depth comparative analysis of the short-listed techniques against four evaluation criteria 
revealed that each technique has strengths and weaknesses. Our evaluation is summarised in the 
table below. 
 
 
 

Criterion Question Findings 
Promotion of 
efficiency 

Which technique 
should be used to 
benchmark a 
given cost 
category? 

Econometric techniques likely more appropriate for high-
level cost categories and business as usual activities 
Engineering models and RNA likely more appropriate for 
lower-level business as usual activities, or new activities 
(especially where significant new investments can be 
anticipated) 

Which technique 
can be used to 
identify where 
inefficiency is 
coming from? 

PPIs can provide a high level indication and are relatively 
simple to implement 
Econometric techniques can be applied to disaggregated 
cost data, but usually the quality of disaggregated data is 
lower 
Engineering based models can be used for specific 
activities 

Transparency Which technique 
is more 
transparent? 

More transparent: PPIs, simple engineering models, 
econometric models (COLS, MOLS, SFA, DEA, StoNED). 
We consider that all these econometric models are 
transparent as the implementation of the model is clear. 
DEA and StoNED might be considered less transparent as 
they do not show the relationship between costs and cost 
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Criterion Question Findings 
drivers as explicitly as the other models. There is also 
limited precedent in the use of StoNED. 
Less transparent: complex engineering models, RNA 

Applicability What is an 
appropriate 
sample size? 

Econometric techniques require a larger sample size than 
engineering models, RNA and PPI (particularly relevant 
since sample sizes may be small in the Dutch context) 

How to account 
for 
heterogeneity? 

All techniques can account for heterogeneity. This can be 
done within the technique or by adjusting cost data ex-ante 
or results ex-post. 

How to account 
for economies of 
scale? 

Econometric techniques (e.g. DEA, SFA) and PPIs can be 
used to estimate economies of scale 
Economies of scale can be assumed for all techniques 

Which technique 
can be used with 
forecast data? 

All techniques can accommodate forecast data, which can 
either be included directly in the estimation or used to 
forecast efficient allowances 

Which technique 
is likely to be 
more resource 
intensive? 

PPI is the least resource intensive, followed by economic-
based models, and complex engineering models and RNA 

Robustness How do you 
ensure 
robustness? 

By ensuring good data quality and testing results of models 
for small variations in data and assumptions 

 

 

Given that each technique has its strengths and weaknesses, there may be merit in 
combining different benchmarking techniques 

Benchmarking is a valuable instrument of the regulatory toolbox. However, when applying this tool, 
it is unlikely that there exists a unique right benchmarking model, as each technique has its own 
strengths and weaknesses. Therefore, there may be merit in combining different benchmarking 
techniques that complement each other in order to offset possible shortcomings of a single 
benchmarking technique. 

A combination of techniques can be used to: 

■ Improve the robustness of the assessment of efficiency of a given cost category and 
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■ Benchmark different cost categories.  

On the first point, it is possible to combine results from different techniques applied at the same 
level of cost aggregation to mitigate some of the weaknesses of specific techniques (e.g. 
benchmarking totex using both SFA and DEA). It is also possible to combine results from techniques 
applied at different level of cost aggregation (e.g. results from a top-down benchmarking of totex 
are combined with results from a bottom-up benchmarking of components of totex).  

On the second point, different techniques can be applied to different cost categories, for example 
SFA might be better suited for benchmarking business as usual activities, while engineering models 
might be better for bespoke large capex investments. 

Some techniques can also be used to understand the sources of inefficiency 

Some of the techniques we identified can be used to understand where inefficiency is coming from, 
which is one of the key implications from CBb’s ruling. For example, even if the overall efficiency of 
costs is assessed using a top-down econometric model, it would be possible to apply specific 
models to disaggregated costs to understand where inefficiency comes from. It is also possible to 
use some descriptive statistics like PPIs to understand how unit costs might differ between 
companies and use this information to attempt to understand the source of inefficiencies. 

Case studies form other jurisdictions show how techniques can be applied and 
combined 

Country Sector Regulator Reason for selecting case study 
Great Britain Gas DSOs Ofgem Use of different techniques to benchmark different 

cost categories (economic and engineering-based 
techniques) 
Use of forward looking data 
Estimation of econometric models with a small 
sample 

Great Britain Electricity 
DSOs 

Ofgem Use of totex regression models and disaggregated 
benchmarking to benchmark a given cost category 
(totex) 
Use of forward looking data 

Estimation of econometric models with a small 
sample 

Finland Electricity 
DSOs 

Energy 
Authority 

Development of benchmarking (from DEA, to DEA 
and SFA, to StoNED) 
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Country Sector Regulator Reason for selecting case study 
Application of StoNED in a regulatory context  

Australia Electricity 
DSOs 

AER Combination of different benchmarking techniques 
(SFA, OLS with fixed effects), and PPIs as cross-
checks 
Use of international sample to address challenges 
with small samples 

Germany Electricity 
TSOs 

BNetzA Application of RNA 

Germany Electricity 
and gas 
DSOs 

BNetzA Different benchmarking techniques applied (DEA, 
SFA) 
Outlier analysis and cost driver analysis 

 

When undertaking a benchmarking study, other aspects of the broader benchmarking 
framework should be considered together with the choice of techniques 

Benchmarking techniques are only one component of the broader benchmarking framework. The 
benchmarking framework to determine static efficiency usually consists of two steps: 

■ Undertaking a benchmarking analysis to estimate relative static efficiencies. There are four 
components of a benchmarking analysis: technique, cost, cost drivers, and sample. 

■ Applying the results of the benchmarking analysis to set revenue allowances. 

Therefore, when undertaking a benchmarking study other aspects of the broader benchmarking 
framework are as important as the choice of technique. For example, when undertaking a 
benchmarking analysis it is important to also consider the set of comparators, how the cost drivers 
are defined, whether the data is consistent across operators and over time, how the results of 
benchmarking are used (e.g. mechanistically or not), and which incentives are in place (e.g. whether 
the operators are incentivised to provide accurate forecasts; what the implications of benchmarking 
opex and capex separately are). 



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    12 

 

 
 
 

1 Introduction 

1.1 Context 

The Authority for Consumers and Markets (ACM) is responsible for the regulation of Dutch electricity 
and gas transmission system operators (TSOs) and distribution system operators (DSOs). For the 
current regulatory period 2022-2026, ACM has used benchmarking techniques to determine the 
efficient costs of the Dutch electricity and gas TSOs and DSOs. For TSOs, ACM identified static 
efficiencies using Data Envelopment Analysis (DEA) in a pan-European benchmarking study of 
TSOs; for DSOs, ACM identified static efficiencies based on a unit cost analysis of Dutch DSOs. 

For future regulatory periods, the benchmarking techniques will likely need to take into account two 
important factors:  

■ The energy transition. The energy transition requires new investments. For electricity system 
operators these investments will include additional decentralised generation and demand 
connection for solar PV, wind, and EVs; voltage control; for the gas system operators these 
investments will focus on potential gas phase-out and repurposing. Benchmarking techniques 
will likely need to be able to support these future efficient investment needs. 

■ The recent decision by the Dutch Trade and Industry Appeals Tribunal (CBb)1 on the 
appeals lodged by the grid operators (DSOs and TSOs) against the Method Decisions for the 
period 2022 – 2026. The CBb has determined that ACM must adjust the way in which the 
dynamic efficiency of regional grid operators is estimated taking into account the impact from 
new challenges due to the energy transition. With regards to the pan-European cost 
benchmarking study for TSOs, the CBb criticised the lack of transparency of data. In addition, 
the CBb criticised that the cost-benchmark study does not allow to identify the source(s) of cost 
inefficiency.  

1.2 Scope of this study 

In this context, ACM has commissioned Frontier Economics to identify benchmarking techniques 
that could be used to determine the efficient costs of gas and electricity TSOs and DSOs in future 
regulatory periods. ACM asked us to investigate advantages and disadvantages of available 
benchmarking techniques and how they can be used in practice for benchmarking. They also asked 
us to identify and summarise relevant case studies. The objective of this study is to support ACM’s 
choice of benchmarking techniques for future regulatory periods. 

 
1  CBb = College van Beroep voor het bedrijfsleven. 
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1.3 Our approach 

The figure below outlines the approach that we have adopted to undertake this study, based on the 
above diagnosis: 

■ First, we identified a long list of benchmarking techniques through a combination of regulatory 
precedent and literature review. 

■ Second, we developed a set of evaluation criteria and in applying those to the long list we 
identified a short list of techniques that might be suitable for application by the ACM. The 
evaluation criteria reflect ACM’s objectives for benchmarking and benchmarking best practice. 

■ Third, we undertook a more comprehensive comparative assessment of the short-listed 
techniques against the evaluation criteria, focussing on how the techniques could be used in 
practice for benchmarking.  

■ Fourth, we investigated how different techniques (or elements thereof) can be combined when 
undertaking a benchmarking analysis and the benefits that this might bring. 

■ Finally, we identified a number of case studies that show how some of the short-listed 
techniques have been used by regulators in other jurisdictions. These case studies can be 
useful to ACM when considering some of the practical aspects of implementing a technique. 

Figure 1 Overview of our approach 

 

Source: Frontier Economics 
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This report is the output of the work we have undertaken for ACM. Our work has benefitted from 
expert input from Professor Dr Christopher Parmeter and Dr Mark Andreas Andor, as well as 
feedback from ACM. The overall findings are solely the responsibility of Frontier Economics. 

1.4 Structure of this report 

The remainder of this report is structured as follows: 

■ In Section 2 we provide more details on the context of this work against which our findings 
should be interpreted.  

■ In Section 3 we present the long list of techniques we have identified. 
■ In Section 4 we explain how we have identified the short list of techniques.  
■ In Section 5 we present our comparative analysis of the short-listed techniques. 

■ In Section 6 we discuss how different techniques can be combined.  
■ In Section 7 we present a range of case studies. 
■ In Section 8 we summarise our findings. 
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2 Use of benchmarking as a regulatory toolbox in the 
Netherlands 

A benchmarking study is part of the toolbox that regulators can use to set efficient revenues or tariff 
allowances of electricity and gas TSOs and DSOs.  

Typically, benchmarking involves identifying a range of ‘inputs’ to the business process (e.g. 
physical inputs such as labour and materials, or financial resources) and a range of ‘outputs’ (e.g. 
services delivered and the quality of those services). A business is regarded as performing more 
efficiently if it is able to deliver more outputs while using the same or less inputs. Differences in the 
operating environment that affect the possible level of performance across different operators will 
need to be taken into account when assessing relative efficiency.  

A number of different techniques can be deployed to conduct a benchmarking study. The choice of 
specific benchmarking techniques used in benchmarking studies depend on a number of factors, 
including the objectives that the regulator wants to achieve as well as which data is available. 

In this section, we provide more details on the context in which ACM is operating which is relevant 
for choosing a benchmarking technique. This context informed our selection of the evaluation criteria 
and case studies. The findings of our report should be considered within this context.  

This section is organised as follows: 

■ First, we summarise how ACM used benchmarking to set allowances for electricity and gas 
TSOs and DSOs in the current regulatory period; 

■ Second, we explain some of the potential implications for future use of benchmarking due to 
the energy transition and the CBb’s recent ruling; and 

■ Third, we explain the different components of a benchmarking analysis: benchmarking 
techniques, costs, cost drivers and the data sample. We also discuss briefly the choices to be 
made when implementing the results of a benchmarking analysis within the overall regulatory 
framework.    

2.1 Overview of the role of benchmarking in the current Dutch regulatory 
framework 

ACM sets the revenue allowances for the Dutch electricity and gas TSOs and DSOs. There are 1 
TSO each for electricity and gas, and 6 DSOs for both electricity and gas. In the current regulatory 
period (2022-26), ACM assessed the static efficiency of the total costs of each individual operator 
to inform its revenue allowances. The static efficiency represents the relative cost efficiency of an 
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operator compared to its peers. Static efficiency is only one component of the revenue allowance 
calculations, other components include dynamic efficiency, regulatory WACC, and for electricity 
DSOs, a quality indicator called ‘q-factor’. The total costs include operating expenditures, 
depreciation, and financing costs.  

ACM has used different benchmarking techniques for TSOs and DSOs as illustrated in the table 
below. We describe how the ACM uses these techniques in turn. 

Table 1 Comparison of ACM’s current approach to determine static efficiency for 
electricity and gas networks 

 

 TSOs DSOs 

Costs Totex (based mainly on historical 
costs) 

Totex (based mainly on historical 
costs) 

Static efficiency Derived from efficient peer from 
pan-European TSO study with 
physical assets as key output 
parameter 

Based on yardstick approach, 
where physical assets are not 
taken into account 

Benchmarking 
technique 

DEA Unit cost approach 

 

Source: Frontier Economics 

 

2.1.1 Electricity and gas TSOs  

The Netherlands has one electricity TSO, TenneT, and one gas TSO, GTS. ACM used a sample of 
European TSOs to assess the static efficiency of TenneT and GTS. 

ACM sets the static efficiency of TenneT based on the efficiency estimated from a pan-European 
TSO study (TCB18-electricity).2 The study estimates the efficiency of TenneT’s costs compared to 
those of other European TSOs using DEA, a non-parametric benchmarking technique. DEA 
estimates the efficiency frontier using total costs as inputs, and three physical outputs: weighted 
physical assets (NormGrid), total installed transformer power, and total line length weighted by 
share of angular towers.  

 
2  https://www.ceer.eu/documents/104400/6742745/TCB18_final_report_elec_190717.pdf/559c7df0-9cf3-2153-07bd-855bdf9a6a13 

https://www.ceer.eu/documents/104400/6742745/TCB18_final_report_elec_190717.pdf/559c7df0-9cf3-2153-07bd-855bdf9a6a13
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ACM set the static efficiency of GTS using a benchmarking approach similar to the approach used 
for TenneT (TCB18-gas)3. The study estimates the efficiency of GTS’s costs compared to those of 
other European TSOs using DEA. The study uses total costs as inputs and four outputs: weighted 
physical assets (NormGrid), number of connection points, installed compressor capacity, and 
pipeline length weighted by a wetness factor.  

2.1.2 Electricity and gas DSOs 

The Netherlands has 6 electricity DSOs and 6 gas DSOs. ACM uses ‘yardstick competition’ to derive 
static efficiency, i.e. by comparing unit costs of each DSOs with an estimate of efficient unit costs. 

In particular, for electricity DSOs, ACM sets static efficiency by comparing the unit costs of each 
DSO with an estimate of the efficient unit costs. Unit costs are derived by dividing total costs by a 
composite output. The composite output is designed to condense the multiple dimensions of an 
operator’s sales into a single statistic.4 The efficient unit costs is the industry average unit cost, 
derived as the ratio of total costs in the industry and the total composite output in the industry. When 
calculating the total efficient costs ACM applies a parameter for dynamic efficiency based on historic 
outturn productivity growth averaged over all six DSOs. If an operator provides its services at a unit 
cost below this benchmark it realises some extra return. For gas DSOs, ACM used the same 
approach adopted for electricity DSOs. 

2.2 Challenges for future regulation and implications for benchmarking 

Two factors are likely to affect the future use of benchmarking: challenges related to the energy 
transition and the CBb’s ruling. 

Implications of the energy transition 

The energy transition is expected to cause changes to the infrastructure and activities undertaken 
by electricity and gas networks. These changes affect electricity and gas networks in different ways: 

■ Electricity networks will likely require large investments to support increased electrification 
(e.g. in the mobility and heating sectors) and the integration of renewable energy sources. For 
example, transmission and distribution networks will need to prepare their networks to deal with 
additional or enhanced decentralised generation and demand (e.g. from solar or wind infeed 
and the increased utilisation of electric vehicles or heat pumps). There is also a need for new 

 
3  Sumicsid. (2019). Pan-European Cost-Efficiency Benchmark for Gas Transmission System Operators. Report for CEER. 

4  Outputs having a larger impact on operators’ costs are assigned a larger weight in the calculation of the composite output than 
outputs with a smaller impact on costs. 
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capabilities for voltage (and frequency) control and congestion management on the distribution 
networks level. 

■ Gas networks will instead likely focus on natural gas phase-out and repurposing of gas assets 
for use with sustainable gases, sometimes referred to as ’green gases’, such as biogas, 
biomethane, hydrogen from renewable electricity (‘green hydrogen’), and hydrogen produced 
using carbon capture technology (’blue hydrogen’). Investment needs are likely to focus on the 
integration of green gases on a more regional level. In the medium to long run repurposing of 
the existing gas grid infrastructure to get it ‘H2 ready’ will trigger further investments. The 
decarbonisation impacts overall gas demand and part of the existing network (in particular 
distribution networks) will not be utilised anymore.  

Future regulation (and therefore benchmarking analysis) will likely need to be adapted to take these 
changes into account and avoid jeopardising future efficient investment needs (as also 
indicated in the recent CBb’s decision – see next section), while there is some degree of uncertainty 
over the timing of the described trends and disruptions. For example, for electricity networks, setting 
incentives for efficient future investments might become more important vis-à-vis identifying cost 
inefficiencies of historical investments; for gas networks, supporting efficient investments for the 
integration of green gases will likely become more important. 

Implications of CBb’s ruling 

On Tuesday, July 4, 2023, the CBb ruled on appeals lodged by the grid operators (regional grid 
operators as well as TenneT and GTS) against ACM’s Method Decisions for the period 2022-2026. 
The CBb confirmed many points of the ACM decision. However, it also ruled that ACM shall adjust 
the Method Decisions in some areas. Concerning the TSO benchmarks, the CBb ruled that there 
was a lack of data transparency. ACM was therefore obligated to amend the Method Decisions for 
TenneT and GTS and set their static efficiency at 100%.  

We identified three areas which may be relevant for future benchmarking studies: 

■ Challenges due to the energy transition. The efficiency of regional grid operators should be 
estimated by accounting for the impact of new technology and investment.  

■ Transparency of approach. The CBb criticised the lack of transparency of the pan-European 
benchmarking study of TSOs, given that the data was not available to the key stakeholders. 
Therefore, future benchmarking studies will likely need to be more transparent, with data 
available to key stakeholders.  

■ Sources of inefficiency. The CBb criticised that the TSO cost benchmarking study does not 
allow identification of the sources of cost inefficiency. 
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2.3 Benchmarking techniques and the broader benchmarking framework 

The benchmarking framework to determine static efficiency usually consists of two steps: 

■ Undertaking a benchmarking analysis to estimate relative static efficiencies. 
■ Applying the results of the benchmarking analysis to set revenue allowances. 

The scope of this study is on benchmarking techniques, which is one of the four components of a 
benchmarking analysis. However, the other components of the benchmarking analysis as well as 
how the results are used is equally important for any benchmarking study. In the remainder of this 
report we comment on these other aspects where relevant. 

Undertaking a benchmarking analysis 

Figure 2 shows four key components of a benchmarking analysis: technique, costs, cost drivers, 
and sample. These components interact with each other. For example, the technique used might 
depend on the data available. 

Figure 2 Four components of a benchmarking analysis 

 
Source: Frontier Economics 
Note: The box highlighted in red is the focus of this study. 

For each of these components, the regulator is likely required to make some material choices around 
how to benchmark operators. 

■ Benchmarking techniques. These are the techniques (or mathematical algorithms) that can 
be used to bring together data  on costs and cost drivers to estimate efficiency. 

■ Costs. These consist of the different ways in which costs could be defined, structured, 
aggregated, and treated for inclusion in a benchmarking study (e.g. benchmarking total costs 
vs. disaggregated costs). 
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■ Cost drivers. These are the key cost drivers of the business. Cost drivers include measures of 
the scale of the network task that each operator undertakes; additional variables that capture 
values outputs, such as quality of supply; and other factors that can affect costs, such as proxies 
for topography or input prices. 

■ Sample. This is the group of comparators considered when undertaking a benchmarking 
analysis. Usually, for most techniques, the greater the sample size the more variables it is 
possible to include within a model and the more robust the estimation of the model. 

We discussed these components in more details in our 2010 study for the UK energy regulator 
Ofgem on the future role of benchmarking in regulatory reviews in light of the proposals emerging 
from the RPI-X@20 review.5 

Applying the results of the benchmarking analysis 

The choice of how to apply the results of a benchmarking analysis in regulatory decisions is often 
as important as the benchmarking analysis in itself. For example it can: 

■ Impact upside chances and downside risks from the benchmarking analysis. For example, if 
the benchmark is determined by the frontier company (i.e. most efficient company) then the 
application mainly results in cost reduction targets for companies with efficiency scores below 
the frontier company, but no upside chances for the frontier company.  

■ Mitigate some of the weaknesses of the benchmarking analysis. For example, if there is 
uncertainty around data quality or modelling results, typically regulators may decide not to use 
the results of the benchmarking analysis mechanistically (e.g. by requiring all companies to be 
100% efficient). Instead, they could apply some regulatory judgment to set the catch-up 
efficiency target (e.g. by using a glide-path or setting the catch-up efficiency below the estimated 
efficiency frontier). 

■ Incentivise operators to provide some expected (and unexpected) responses. It is therefore 
important that the regulator is clear and mindful of the incentives caused by its approach to 
benchmarking. For example, a regulator that benchmarks opex and capex separately might 
inadvertently cause a capex bias. Another example is when forecast data is used without 
placing incentives on companies to produce accurate forecasts (and hence companies may 
decide to over/under forecast in order to get a higher allowance or a better efficiency score). 

 
5 See Frontier Economics. (2010). RPI-X@20: The Future Role of Benchmarking in Regulatory Reviews. 

https://www.ofgem.gov.uk/sites/default/files/docs/2010/05/rpt-benchmarking.pdf  

https://www.ofgem.gov.uk/sites/default/files/docs/2010/05/rpt-benchmarking.pdf
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3 Long list of benchmarking techniques 
In this section we present an overview of the different benchmarking techniques that can be used 
for a regulatory benchmarking study. We identified these techniques by surveying the academic 
literature and regulatory precedents. Our long list of techniques includes techniques that have been 
used extensively, such as DEA, as well as less commonly used techniques (e.g. StoNED and four 
component SFA), some of which have been developed fairly recently in the academic literature. 

The remainder of this section is structured as follows: 

■ First, we present a classification of the range of possible techniques in three high-level groups: 
descriptive techniques, economic-based techniques, and engineering-based techniques. This 
classification is helpful when comparing the techniques. 

■ Then, we summarise and explain each of the techniques we have identified. 

3.1 Our classification of benchmarking techniques 

Benchmarking techniques can be classified in three broad groups with different characteristics.  

■ Descriptive techniques; 
■ Economic-based techniques (parametric, non-parametric, semi-parametric); and 

■ Engineering-based techniques. 

Table 2 illustrates the long list of techniques that we have identified for each group.  

Table 2 Our long list of benchmarking techniques 

Group Sub-group Technique 
Descriptive 
technique 

Performance 
indicators 

Partial Performance Indicators (PPIs) 

Mainly based 
on economic 
theory 

Parametric OLS, Corrected OLS (COLS), Modified OLS (MOLS) 
Quantile regression 
Stochastic Frontier Analysis (SFA) 

Variations of SPA (e.g. four random components SFA) 

Non-parametric Data Envelopment Analysis (DEA, bootstrap DEA) 
Free Disposable Hull (FDH) 
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Multilateral Total Factor Productivity (MTFP) 

Multilateral Partial Factor Productivity (MPFP) 

Semi-parametric Stochastic non-smooth envelopment data (StoNED) 
Stochastic FDH/DEA 

Variations of StoNED (Maindiratta; Fan, Li & Weersink; 
Parmeter and Racine) 

Mainly based 
on engineering 
rationale 

Engineering 
based 

Process benchmarking 
Reference Network Analysis (RNA) 
Engineering models 

 
 
 

Source: Frontier Economics 

 

Descriptive techniques 

Descriptive techniques are simple techniques that are used to show how inputs and outputs are 
related. These techniques include unit cost analysis or comparative analysis of key characteristics 
of businesses (e.g. density of supply volumes or connections).  

Inputs and outputs can be measured both in monetary terms and physical terms, and usually no 
adjustment for exogenous factors affecting performance is done. These techniques do not usually 
allow identification of an efficiency frontier. However, they are sometimes used to determine 
benchmarks for unit costs (e.g. by taking the average of the unit costs across a range of companies). 
Such techniques may help assess the plausibility of benchmarking results derived from the other, 
more sophisticated techniques. For example, a company that performs well in all dimensions of 
partial benchmarks should be expected to also perform well when other techniques are applied. 

Economic-based techniques  

Economic-based techniques include all techniques that are grounded in microeconomic production 
theory, where a cost function links inputs used to outputs produced allowing for an inefficiency 
component and potentially some random noise. In formula, 

𝑐� = 𝑚(𝑦� , 𝑧�) + 𝑢� + 𝑣�, 
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where 𝑐� is the cost incurred by firm 𝑖; 𝑚(. ) is the cost function that describes how a set of outputs, 
𝑦�, and exogenous environmental variables, 𝑧�, affect costs; 𝑢� is the inefficiency; and 𝑣� is the 
random noise. See box in the next page for examples of cost functions and their properties. 

Economic-based techniques can be classified in three groups, according to whether a priori 
assumptions are used to determine the cost function and the distribution of the inefficiency term. 
This is summarised in the table below. We describe each group of techniques in more detail below 
the table. 

Table 3 Comparison of key characteristics of parametric, non-parametric, and 
semi-parametric techniques 

 

 Parametric Non-parametric Semi-parametric 

Cost function Assumption of 
specific functional 
form required 

No assumption on 
functional form 
required. Some basic 
axioms of production 
theory may be 
imposed. 

No assumption on 
functional form 
required. Some basic 
axioms of production 
theory may be 
imposed. 

Inefficiency A priori assumption 
required regarding 
error term 

All deviations 
assumed to be 
inefficiency 

A priori assumption 
usually required 
regarding error term 

Example SFA DEA StoNED 
 

Source: Frontier Economics 

 

■ Parametric techniques. These techniques require the assumption of specific functional forms 
for the cost function and the distribution of the error term. Once the cost function is 
parameterised different estimation techniques can be used to determine the underlying 
parameters from the observed data. Since the classical economic assumption of cost functions 
(mainly monotonicity and convexity – see box below for more details) are typically not explicitly 
imposed on the model, estimates might not always obey all of these axioms. An example of a 
parametric technique commonly used in benchmarking studies is Stochastic Frontier Analysis 
(SFA). 

■ Non-parametric techniques. These techniques do not require an a priori specification of the 
functional form of the cost function or the distribution of an error term. Non-parametric 
techniques might explicitly impose some axioms of production theory (e.g. monotonicity and 
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convexity) on the estimation, without restricting the precise functional form that has to be 
obeyed. Since these models generally lack a stochastic element, the level of inefficiency they 
determine is entirely deterministic. That is, all deviations from the estimated efficiency frontier 
are treated as inefficiency. A non-parametric technique commonly used in benchmarking 
studies is DEA. However, there are also variants of non-parametric techniques allowing for 
random noise. 

■ Semi-parametric techniques. These techniques try to combine some of the advantages of 
parametric and non-parametric techniques. For example, the cost function could be estimated 
following a non-parametric approach. Then, some distributional assumptions are imposed on 
the deviation from the frontier to determine inefficiency. An example of a semi-parametric 
technique is StoNED, which is used by the Finnish regulator to benchmark the electricity DSOs 
in Finland. 
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Cost functions and their properties in classical production theory 

In production theory, a cost function is a function that describes the relationship between the costs 
and outputs or other cost drivers of a production process. Two cost functions often used for cost 
benchmarking using parametric models are the Cobb-Douglas function and the more general 
Translog function:  
■ The Cobb-Douglas cost function assumes a constant elasticity between costs and outputs, 

which implies a constant return to scale, as well as a constant elasticity of substitution between 
the outputs. For the example of two outputs 𝑦� and 𝑦�, the Cobb-Douglas cost function of firm 
𝑖 can be expressed formally as  

𝑙𝑛(𝑐�) = 𝑏� + 𝑏�ln (𝑦�
�) + 𝑏�ln (𝑦�

�) + 𝜖�  , 

where 𝑐� indicate costs, 𝜖� is the error term and 𝑏�, 𝑏� and 𝑏� are cost function parameters.6 
■ The Translog cost function generalizes the Cobb-Douglas by incorporating second order 

(interaction and squared) terms. This allows heterogenous elasticities, substitution patterns and 
returns to scale. For the two output example, it can be expressed formally as 

ln�𝑐�)  =  𝑏� + 𝑏� ln�𝑦�
�� + 𝑏�ln (𝑦�

�� + 𝑏� ln�𝑦�
���

+ 𝑏� ln�𝑦�
���

+ 𝑏� ln�𝑦�
�� ln�𝑦�

�� + 𝜖�  . 

In theory, cost functions are usually assumed to have a number of properties (also referred to as 
axioms). Two key properties of production functions are monotonicity and convexity. 

■ Monotonicity: A vector of outputs can always be produced at a higher cost, holding input prices 
fixed. If input prices increase, then costs must increase for a fixed output vector. 

■ Convexity: The cost of producing a convex combination of outputs is no greater than the 
convex combination of costs. 

We note that there are some exceptions that might require weaker axioms. For example, non-
monotonicity (or weak disposability) may be required in some cases. 

Engineering-based models  

Engineering-based models rely more heavily on engineering or expert insights to develop an 
assessment of efficient costs. The methods can either be applied to aggregated costs (e.g. 
Reference Network Analysis) or to disaggregated costs for different activities (e.g. process 
benchmarking) or projects (e.g. engineering assessment). Hence, these techniques range in 
complexity, from simple relationship between cost and cost drivers, to more complex models for 
calculating an ‘optimal network’. 

 
6  It is straight forward to extend the Cobb-Douglas cost function to the case of three or more cost drivers. For a detailed discussion 

of the Cobb-Douglas cost function see: Biddle, J. (2012). Retrospectives: The Introduction of the Cobb-Douglas Regression. 
Journal of Economic Perspectives, 26(2), 223-236. 
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Engineering-based models can either be used to assess the efficiency of costs or as a tool to identify 
relevant cost drivers which can then be applied within other benchmarking techniques. For example, 
RNA is used in Germany to assess the efficiency of electricity TSOs; Model Network Analysis, an 
approach similar to RNA, but that assumes more stylised and homogenous structures (e.g. constant 
densities throughout a service area, ignoring specific routes), was used in Austria to calculate an 
environmental complexity parameter which was then used in the benchmarking model. 7  

Sometimes, these engineering-based models are also used to derive variables that are grounded 
in engineering logic and can be used for unit cost analysis or tested in economic-based models. 

3.2 Descriptive techniques 

Partial performance indicators (PPIs) 

PPIs are a technique that allows one to compare the performance of businesses in delivering one 
specific output. PPIs are defined as the ratio of an input to an output. More complex PPIs could be 
defined using composite inputs and composite outputs. It is also possible to benchmark companies 
in relation to multiple PPIs.  

A lower PPI indicates that less input is required to produce one unit of output indicating a more 
efficient production process. PPIs are useful to gain a first indication of the relative efficiency of 
different production processes or to conduct more detailed studies of the sources of identified 
inefficiencies. However, they do not provide a basis for a rigorous evaluation of the efficiency of two 
or more firms, as they lack a consistent way of evaluating the entire production process, which 
includes various outputs and inputs. 

Formally, a PPI can be defined as follows: 

𝑃𝑃𝐼�(𝑥� , 𝑦�) = ��
��

, 

where 𝑥� is an input (e.g. opex, capex, totex, number of full time employees, etc.) and 𝑦� is an output 
(e.g. number of customers served, network lengths, etc.) of firm 𝑖, respectively. Inputs and outputs 
can be measured both in monetary terms and in physical terms. Since the PPI can be calculated for 
a specific year or over a period of time, it can be used for comparisons over time and across 
businesses. Unit costs are a subset of PPIs, where the inputs are expressed in monetary terms (e.g. 
cost per connection, cost per MWh served). 

The virtue of the PPI is that it is easy to understand, calculate and interpret. Once relevant inputs 
and outputs are collected, PPIs can be used to understand at a high level how different companies 

 
7 See Section 3.4 for a description of this technique. 
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are performing across various dimensions. PPIs can also be used to identify potential data issues, 
for example by comparing a given PPI for a given company over time to identify potential data 
anomalies. More disaggregated PPIs can also be used to identify potential sources of inefficiencies.  

Generally, the major caveat of the PPI approach is that it lacks a consistent way to evaluate firms’ 
efficiency taking into account the effects of multiple inputs and outputs. For instance, if 𝑃𝑃𝐼�(𝑥� , 𝑦�) >
𝑃𝑃𝐼��𝑥�, 𝑦�� this could indicate firm 𝑖 operates less efficiently than firm 𝑗, since it requires more of 
input 𝑥 to produce output 𝑦 resulting in higher costs. However, it could be that firm 𝑖 produces more 
of an additional output 𝑦� that also requires 𝑥 as an input. Moreover, there might be different inputs 
available to the firm that act as substitutes in the production of the output 𝑦. Making intensive use 
of input 𝑥 in the production process can be the most efficient way of production if it allows a less 
intensive use of other inputs. An example could be firm 𝑖 having higher capital costs that allow 
producing the same output with lower employment of human capital. A single PPI is not able to 
inform such trade-offs and therefore has to be treated with caution and can therefore not be used 
as a general measure of efficiency. Alternative methods like DEA and MTFP can be used to make 
this sort of assessment as they allow aggregation of multiple inputs and outputs to produce an 
overall measure of productivity. We describe these in greater detail in the next section. 

PPIs are used in a number of jurisdictions. For example, in Australia the AER estimates PPIs of key 
inputs and outputs for DSOs and TSOs.8 

3.2.1 Australia – Application of PPIs for electricity TSOs and DSOs 

The AER estimates PPIs based both on total opex and on disaggregated cost categories. Total 
opex PPIs show total opex per customer, circuit length, and maximum demand. The more 
disaggregated PPIs focus on costs for specific activities, like vegetation management, 
maintenance and emergency response. These disaggregated PPIs use a specific output for each 
cost category. The AER typically compares the PPIs against a measure of density to allow for 
better comparison across operators. 

 
8  See for example the AER 2022 annual benchmarking report. https://www.aer.gov.au/networks-pipelines/guidelines-schemes-

models-reviews/annual-benchmarking-reports-2022 

https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022
https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022
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Figure 3 AER’s 2021 PPI of opex per maximum demand vs density for DSOs 

 
Source: AER 2021 Annual benchmarking report, https://www.aer.gov.au/system/files/Distribution%20-%20Report%20-%20AER.pdf 

Figure 3 plots the PPI of total costs per maximum demand (in MW) on the y-axis against the average 
customer density per kilometre on the x-axis for different Australian electricity DSOs. The figure 
provides a quick and clear indication for a negative relationship between the costs of providing the 
maximum demand and the population density in the area the DSO is operating in. This contributes 
to a general understanding of one the factors driving a DSO’s costs. It also provides an indication 
that some DSOs provide the service at lower cost than others, even if they encounter similar levels 
of population density. For instance, TasNetworks has higher cost per maximum demand than 
Powercor, even though TasNetwork’s population density is actually slightly higher. However, there 
could be factors other than population density that are specific to TasNetworks and that imply that 
it encounters higher costs according to this PPI even though it generally operates efficiently. 
Therefore, it is unlikely that a definitive conclusion on whether or not TasNetworks is actually 
operating less efficient than Powercor can be made by considering only the PPIs plotted in the 
figure. 

3.3 Economic-based techniques 

3.3.1 Parametric techniques 

Ordinary Least Squares (OLS) 

The OLS regression model is a standard econometric technique whose theoretical properties and 
practical application is generally well understood by many practitioners in the field of cost 
benchmarking. In the context of efficiency benchmarking, the model is used to estimate the 

https://www.aer.gov.au/system/files/Distribution%20-%20Report%20-%20AER.pdf
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relationship between firms’ costs and cost drivers such as outputs and environmental variables. The 
estimated model allows to obtain predictions of the mean cost level conditional on the observable 
characteristics. It is then possible to estimate the efficiency of the individual electricity or gas network 
operator relative to the mean cost level by comparing the predicted costs to the actual costs 

Let 𝑐� denote the scalar cost level of firm 𝑖 that depends on a column vector of outputs 𝒚� 9 and the 
error term 𝜀�.10 OLS then estimates the intercept, 𝛼, and the row vector of slope coefficients, 𝜷,11 in 
the following model: 

𝑐� = 𝛼 + 𝜷𝒚� + 𝜀� 

by minimising the sum of squared residuals, which are defined as the difference between the 
predicted and the actual value of the dependent variable 𝑐�. In principle, the predicted cost for the 
individual firm, �̂��, can then be used as the cost benchmark against which the actual cost level, 𝑐�, 
can be assessed. In this case, the estimated regression line (also called ‘conditional average 
function’) is considered the efficiency benchmark. Figure 4 illustrates the level of inefficiency that is 
attributed to a firm at point A according to the OLS estimate. 

 
9  When presenting mathematical formula we use a bold font to indicate vectors. 

10  Environmental variables are dropped from the regression equation for notational convenience. 

11  For example, the slope coefficient could estimate how strongly cost (here: ci) varies with changes of service levels (as embodied 
in the vector y). 
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Figure 4 Illustration of an OLS efficiency frontier 

 
Source: Frontier Economics 
 

Two key advantages of the OLS model are its relative simplicity and its widespread use in 
econometrics. As a consequence, the OLS model and its results are typically well understood by 
regulators and regulated companies. The model can be used to explore the relevance and statistical 
significance of cost drivers and estimate efficiency score. The model is also flexible and can be 
applied to both historical and forecast data. It can also easily be extended to a panel context. 

A caveat of the OLS regression model in the context of efficiency benchmarking is that it does not 
separate out the distinct influence of firms’ inefficiency from general stochastic noise in the error 
term, 𝜀�. In other words, any departure from the prediction is considered an inefficiency, even though 
it could be down to random noise.  

Moreover, the conditional average function obtained from the OLS estimation represents average 
costs, which are unlikely to coincide with efficiency costs. Hence the line is unlikely to represent an 
efficiency frontier. Figure 4 indicates that many of the observations outperform the regression line 
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(cost benchmark), sometimes quite substantially, which gives an intuitive impression that likely not 
all inefficiencies are captured by the benchmark.12 

Several alternative parametric models attempt to address the caveats of the standard OLS 
framework for efficiency benchmarking. 

Corrected OLS (COLS) 

The COLS regression technique is an extension of the standard OLS regression that can be used 
to define a more ambitious efficiency benchmark. For this purpose, the conditional average function 
given by the OLS regression line is shifted down. The larger the downward shift the more ambitious 
the resulting efficiency benchmark against which firms’ costs are compared becomes. 

The size of the downward shift is based on some regulatory judgment. 13 One option is to shift the 
regression line downwards such that it passes through the observation pertaining to the firm 
exhibiting the lowest costs. Figure 5 illustrates such a shift. The result is an efficiency frontier that 
identifies some positive inefficiency for all firms but those setting the frontier. A caveat of this 
approach is that it is fully deterministic and does not account for random noise that could lead to 
deviations from the benchmark that are the result of unexpected events outside of the control of the 
firm rather than actual inefficiency. Some regulators have therefore taken more cautious 
approaches, for example by shifting the regression line downwards such that it passes through the 
observation pertaining to the firm representing a certain quantile of the cost distribution (e.g. 
choosing the efficient firm to have costs below 90% of all firms in the sample), rather than the most 
efficient firm. 

Given its close relationship to the well know OLS regression framework, the technique is generally 
well accessible to regulators and regulated firms. Furthermore, it can also be applied quite easily in 
different contexts, e.g. using forward looking or historical data or in a panel context. The technique 
is therefore frequently considered by regulators when choosing a benchmarking method and has 
been used a lot in the past.  

 
12  From a technical point of view, assume that the error term ε_i can be expressed as the sum of two components, v_i and u_i, 

representing stochastic noise and inefficiency, respectively. Since inefficiency only affects costs by increasing them, it has a 
mean larger than zero, which we denote by μ>0. This implies that also the composite error ε_i has mean μ>0, which will result in 
the intercept of the OLS model picking up the mean inefficiency in the estimation of the OLS regression equation. The intercept 
defines the OLS regression line. Therefore, the use of OLS for benchmarking  likely requires additional steps if the regulator 
wants to set the efficient cost at a more ambitious level than the average level of efficiency in the sample. 

13  We note that there is no consensus in the literature on the precise methods that are associated to the terms COLS and MOLS. In 
fact, both terms are used interchangeably depending on the interpretation of the author. The descriptions provided in sections 0 
and 0 reflect Frontier Economics’ view on the meaning of both terms . For a detailed review of the evolution of the terminology 
used in the academic literature see: Parmeter, C. F. (2023). Is it MOLS or COLS? In P. Macedo, V. Moutinho, & M. Madaleno 
(Eds.), Advanced Mathematical Methods for Economic Efficiency Analysis (pp. 229-249). Springer.   
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For example, the British energy regulator, Ofgem, assesses efficiency levels of electricity and gas 
DSOs by calculating individual efficiency scores as the ratio of submitted costs and the OLS 
prediction. It then uses a pre-defined quantile of the resulting efficiency score distribution (typically 
the 85th quantile) to define an efficiency frontier that is applied to  all DSOs in the sample. 

Modified OLS (MOLS) 

Similar to COLS, the MOLS regression technique extends the standard OLS framework to define a 
more ambitious efficiency benchmark by shifting down the OLS regression line to account for the 
composite error structure (inefficiency and random noise), which is ignored in OLS. In contrast to 
COLS, the modified OLS determines the size of the shift of the regression line based on statistical 
analysis of the OLS residuals. Concretely, MOLS shifts the OLS regression line down by an estimate 
of the average inefficiency. The average inefficiency is estimated from the OLS residuals by making 
some assumptions around the distribution of the inefficiency and the random noise. The idea to 
estimate the mean inefficiency to correct the OLS regression line is closely related to SFA. 

Figure 5 illustrates a potential shift of the OLS regression line in an application of MOLS. Since the 
shift of the regression line represents the mean efficiency level, excluding noise, the MOLS frontier 
does not intersect the firm with the lowest cost. It thus leaves room for random noise to explain 
deviations from the frontier that are outside the control of the firm and do not represent actual 
inefficiency. 

While MOLS avoids the need for an ad hoc assumption by the regulator on the size of the shift of 
the OLS regression line (as this is estimated from the sample), its implementation requires 
assumptions on the distribution of the inefficiency term and random noise. The close relationship to 
OLS implies that the technique is well accessible to regulators and regulated firms, and can be 
easily applied in different contexts. Therefore, it is frequently considered as a potential 
benchmarking technique by regulators.  

For example, the Austrian energy regulator, E-Control, applies MOLS (in combination with DEA) to 
assess the efficiency levels of the electricity14 and gas15 DSOs. E-Control uses a Cobb-Douglas log-
linear functional form for estimating the costs function and assumes that the inefficiency term follows 
a Half-Normal distribution. 

 
14  See E-Control report for electricity DSOs. https://www.e-

control.at/documents/1785851/1811582/Regulierungssystematik_4_Periode_STROM_Dez+2018.pdf/a413df20-00b2-9dca-ba43-
4ae52754b27e?t=1562139961156  

15  See E-Control report for gas DSOs. https://www.e-
control.at/documents/1785851/1811582/02_Finale+Regulierungssystematik+4_RP.pdf/40fcc26d-253d-0533-2d74-
3774dce4e341?t=1668673860094  

https://www.e-control.at/documents/1785851/1811582/Regulierungssystematik_4_Periode_STROM_Dez%202018.pdf/a413df20-00b2-9dca-ba43-4ae52754b27e?t=1562139961156
https://www.e-control.at/documents/1785851/1811582/Regulierungssystematik_4_Periode_STROM_Dez%202018.pdf/a413df20-00b2-9dca-ba43-4ae52754b27e?t=1562139961156
https://www.e-control.at/documents/1785851/1811582/Regulierungssystematik_4_Periode_STROM_Dez%202018.pdf/a413df20-00b2-9dca-ba43-4ae52754b27e?t=1562139961156
https://www.e-control.at/documents/1785851/1811582/02_Finale%20Regulierungssystematik%204_RP.pdf/40fcc26d-253d-0533-2d74-3774dce4e341?t=1668673860094
https://www.e-control.at/documents/1785851/1811582/02_Finale%20Regulierungssystematik%204_RP.pdf/40fcc26d-253d-0533-2d74-3774dce4e341?t=1668673860094
https://www.e-control.at/documents/1785851/1811582/02_Finale%20Regulierungssystematik%204_RP.pdf/40fcc26d-253d-0533-2d74-3774dce4e341?t=1668673860094
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Figure 5 Illustration of a COLS and MOLS efficiency frontier 

 
Source: Frontier Economics 

Quantile regressions  

Quantile regressions are an extension to standard linear regression models. Different from OLS, 
quantile regressions do not estimate the conditional mean of the dependent variable as a function 
of observed covariates, but rather a conditional quantile function that predicts the chosen quantile 
of the dependent variable based on the observed covariates.16 The technique is an alternative to 
COLS that allows to directly estimate the cost benchmark as the quantile chosen by the regulator. 
Compared to COLS, it does not require two separate steps to first estimate the OLS regression line 
and then shift it to determine the chosen benchmark. 

While OLS estimates the regression parameters by minimising the sum of squared residuals, 
quantile regression minimises the sum of absolute residuals. Different quantiles can be estimated 
by assigning different weights to positive and negative residuals. For example, a conditional median 

 
16  For a short introduction to quantile regressions see: Koener, R., & Hallock, K. F. Quantile regression: An introduction.. 

http://www.econ.uiuc.edu/~roger/research/intro/rq3.pdf. 

http://www.econ.uiuc.edu/~roger/research/intro/rq3.pdf
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function can be estimated by assigning equal weights to positive and negative residuals. In general, 
if a quantile below the median is chosen in the estimation, negative residuals are weighted higher 
to push the regression line below the median and through the quantile of interest.17 

Figure 6 illustrates the use of quantile regression for efficiency benchmarking graphically. In the 
example, the regulator set the efficiency frontier at the 10th quantile. This assumption implies that a 
firm that produces a comparable output at lower costs than 90% of the firms in the sample is 
considered efficient.18 Costs above the regression line, such as at point A, are considered inefficient. 
Firms that operate at costs below the regression line are more efficient than the frontier defined by 
the regulator. 

Figure 6 Illustration of a quantile efficiency frontier 

 
Source: Frontier Economics  

The application of quantile regressions for efficiency benchmarking is similar to the use of COLS, in 
that the regulator has to set how ambitious the cost frontier should be set. Compared to COLS, the 

 
17  In practice, to estimate a conditional quantile 𝜏 the absolute value of the negative residuals is assigned a weight equal to 1 − 𝜏, 

while the value of the positive residuals is assigned a weight equal to 𝜏. 
18  In this example, the quantile regression line is estimated by assigning to negative residuals a weight of 0.9 in the estimation and 

to positive residuals a weight of 0.1. This results in a regression line that reduces the presence of negative residuals. 
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regression line is estimated directly for the chosen quantile and does not require a shift of the 
conditional mean function.19 It requires fewer assumptions to obtain consistent estimates of the 
quantiles and is less prone to outliers as it is based on a minimisation of a loss function of absolute 
distances to the regression line rather than the squared distances as in OLS. 

While quantile regression is similar to OLS with respect to the data requirements and practical 
implementation, it produces less precise results with the same data (i.e. the estimator is less 
efficient) if the OLS assumptions are met. In addition, it has – to our knowledge – not yet been 
applied in a regulatory setting of efficiency benchmarking for energy network operators. Therefore, 
potential limitations of the approach have not been explored as carefully as for related approaches. 
Also, regulators and regulated firms are likely to be less informed on the use of the technique. 

Stochastic Frontier Analysis (SFA) and variations  

SFA is an extension of the standard OLS regression framework that explicitly attempts to 
differentiate random noise from technical inefficiency. By definition, random noise is assumed to 
affect costs randomly, i.e. it can both increase or decrease costs; technical inefficiency, in contrast, 
is assumed to increase costs. To implement the estimation, it is necessary to make some 
distributional assumptions on the inefficiency term and the random noise that reflect how costs are 
affected by these different components. By doing so, the SFA model allows to explicitly account for 
both the existence of random noise and inefficiency in the benchmarking of operators. 

Formally, SFA estimates the same regression equation as OLS, but models the error term 𝜀� as the 
sum of two distinct components, 𝑣� and 𝑢�, representing stochastic noise and inefficiency, 
respectively. The regression model thus becomes: 

𝑐� = 𝛼 + 𝜷𝒚� + 𝑢� + 𝑣�. 

The model identifies 𝑣� and 𝑢� by assuming both error components follow distinct distributions that 
reflect the idea that the support of inefficiency, 𝑢�, has to be positive (as it can only increase costs), 
while the stochastic noise term is distributed symmetrically around zero (as it can increase or 
decrease costs). Typical choices of distribution functions for the inefficiency term are the Half-
Normal and the Exponential distribution; the stochastic noise is typically assumed to follow a 
Standard Normal distribution.  

 
19  This also implies that the slope coefficients may change depending on the quantile chosen for setting the frontier. In contrast, the 

efficiency frontier estimated using COLS and MOLS is always based on the OLS slope coefficients, only the OLS intercept is 
adjusted.. 
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Once assumptions around the distribution of the error term are made, the estimation can be 
implemented either in one step by maximum likelihood or in two steps by Generalized Methods of 
Moments (GMM) or the so called plug-in likelihood (PL) developed by Fan, Li & Weersink (1996).20  

As mentioned above, the conditional average function resulting from the SFA regression represents 
an efficiency frontier that allows for the fact that deviations from the frontier can also be the result of 
random shocks 𝑣�. While the actual level of inefficiency of the individual firm, 𝑢�, is not observed, it 
is possible to estimate the expected value of 𝑢� given the value of the composed error 𝜀� = 𝑢� + 𝑣� 
following an approach developed by Jondrow et al. (1982).21 

Figure 7 Illustration of a SFA efficiency frontier 

 
Source: Frontier Economics 

 
20  It is instructive to consider the functioning of the two-step approaches as both start by first estimating the above equation by OLS. 

As discussed in Section 3.3.1 this leads to an intercept that is biased upwards by the estimate of the mean inefficiency 𝜇. The PL 
and GMM estimations use the estimated OLS residuals to estimate the parameters of the assumed error distributions (by 
maximum likelihood and Method of Moments  respectively). It is then possible to obtain an estimate of 𝜇 and use this estimate to 
correct for the upward bias in the intercept. 

21  Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier 
production function model. Journal of Econometrics, 19(2-3), 233-238. 
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The main advantage of SFA is that it allows to account for random noise in a consistent framework 
and in an intuitively appealing way. However, a precise estimation of the parameters of both the 
efficiency and the random noise distribution requires larger datasets than the other parametric 
approaches and it requires sufficient variation in the data. In addition, the application of SFA requires 
the regulator to make assumptions on the specific distributional forms of the inefficiency and 
stochastic noise terms. 

SFA is often considered as a benchmarking tool by regulators of electricity and gas networks. For 
example, Bundesnetzagentur in Germany uses it to benchmark electricity and gas DSOs; the 
Australian Energy Regulator uses it to benchmarking electricity DSOs; Ofgem, the UK energy 
regulation, uses SFA to conduct robustness checks of its preferred OLS based benchmarking 
approach. 

In the academic literature various extensions to the SFA framework have been developed that allow 
to split the general error term, 𝜀�, into up to four random components. For example, the four random 
components SFA explicitly models both a, a time-constant inefficiency 𝑢�� and a time-varying 
inefficiency 𝑢�� as well as a firm-specific heterogeneity 𝑏�, and random noise 𝜈��.22 The regression 
equation of the model is: 

𝑐�� = 𝛼 + 𝜷𝒚�� + 𝑏� + 𝑢�� + 𝑢�� + 𝜈��, 

where 𝑖 is a firm, and 𝑡 is time. To estimate time-varying inefficiency the model requires panel data. 
In fact, the panel dataset has to be sufficiently large and exhibit sufficient variation over time to 
identify the different stochastic components in addition to the firm fixed effect, 𝑏�. In the context of 
cost benchmarking of electricity and gas networks such large dataset will often not be available to 
regulators. In addition, when estimating this model it is important to consider whether the 
assumptions made and data available allow to appropriately distinguish between inefficiency (and 
potential changes in efficiency) and heterogeneity.  Besides the relative novelty of these 
approaches, these problems might help to explain why they have – to our knowledge - not yet been 
applied in practical work on efficiency benchmarking of electricity and gas networks so far. 

3.3.2 Non-parametric techniques 

Data Envelopment Analysis (DEA)  

DEA is a non-parametric technique that is used to determine an efficiency frontier empirically, 
without the need to make ex-ante assumptions about the cost function (i.e. how inputs are turned 

 
22  The four random components stochastic frontier model nests many of the alternative SFA extensions developed in the literature. 

For a discussion see for instance Colombi, R., Kumbhakar, S. C., Martini, G., & Vittadini, G. (2014). Closed-skew normality in 
stochastic frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis, 42, 123-136. 
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into outputs). At a high-level, the DEA cost efficiency frontier is a frontier that envelopes all data 
points and follows certain axioms of production (e.g. convexity). The frontier is calculated by solving 
a linear programming with some constraints. The linear programme identifies the optimal 
combination of input and output weights that maximise the productivity (ratio of weighted outputs to 
weighted inputs) of the firms under consideration given the constraints (this guarantees that each 
firm is efficient as possible given the assumptions taken).23 

Figure 8 illustrates the use of DEA. It plots firms’ costs on the y-axis against a cost driver on the x-
axis. The latter can be thought of as a single output affecting costs or as a ‘virtual’ cost driver that 
is obtained as the weighted sum of cost drivers minimis in the case that costs are driven by multiple 
factors. The DEA frontier combines data points with lowest costs across the range of different cost 
driver quantities. The level of inefficiency of a given firm can then be determined by assessing its 
distance from the frontier.  

For example, the part of the efficiency frontier associated to firm A in the figure is obtained by the 
linear interpolation of the cost levels of firms B and C, which are A’s closest neighbours on the 
frontier line. More precisely, the line between points D and E defines the continuum of points that 
can set the scope of potential efficiency increases, as each point on this line represents the potential 
to decrease costs without the need to reduce cost drivers (e.g. outputs) or to extend use of one or 
more cost drivers without increasing costs (i.e. inputs). For example, the distance between points A 
and D indicates the potential for cost reduction . Given that outputs of network operators are typically 
fixed in the short term, this is the level of inefficiency typically applied for cost benchmarking of 
electricity and gas networks.  

Other approaches can be used to determine the comparison point from which to infer the efficiency 
(e.g. a point on the frontier between D and E). Generally, the relative efficiency levels obtained from 
the DEA model are fairly robust to the alternative chosen to calculate the level of inefficiency.24  

 
23  The ACM already explored DEA in detail in 2017. For details of the study prepared by advising economists at the time see 

Lawrence, D., Fallon, J., Cunningham, M., Zelenyuk, V., & Hirschberg, J. (2017). Topics in efficiency benchmarking of energy 
networks: Choosing the model and explaining the results. .https://www.acm.nl/sites/default/files/documents/2020-08/economic-
insights-topics-in-efficiency-benchmarking-of-energy-networks-choosing-the-model-and-explaining-the-results.pdf 

24  For a short discussion on the effects of the choice of the comparison point in DEA applications see page 133 in Banker, R. D., 
Charnes, A., Cooper, W. W., Swarts, J., & Thomas, D. (1989). An introduction to data envelopment analysis with some of its 
models and their uses. Research in Governmental and Nonprofit Accounting, 5(1), 125-163. 

https://www.acm.nl/sites/default/files/documents/2020-08/economic-insights-topics-in-efficiency-benchmarking-of-energy-networks-choosing-the-model-and-explaining-the-results.pdf
https://www.acm.nl/sites/default/files/documents/2020-08/economic-insights-topics-in-efficiency-benchmarking-of-energy-networks-choosing-the-model-and-explaining-the-results.pdf
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Figure 8 Illustration of a DEA efficiency frontier 

 
Source: Frontier Economics 

As mentioned above, a key advantage of DEA is that it does not require an ex-ante assumption 
around the cost function to estimate the efficiency frontier. DEA also allows for different returns to 
scale assumptions, e.g. constant returns to scale or variable returns to scale. Compared to other 
non-parametric techniques, such as partial performance indicators or MTFP, the weights used in 
the DEA estimation to aggregate multiple inputs and outputs are chosen such that every firm 
appears as efficient as possible for the given data. 

These advantages explain why DEA is frequently applied to assess the efficiency of electricity and 
gas networks. For example, DEA is used in the European benchmarking study of TSOs in Europe 
(TCB18); in Germany for electricity and gas DSOs; in Norway for electricity DSOs; and in Austria 
for electricity and gas DSOs. 

A disadvantage of the DEA estimator is its known bias in small samples, particularly if many inputs 
and outputs are modelled. In those situations, the DEA cost frontier is likely to be upward biased , 
as firms are estimated as being closer to the frontier than they actually are. A further limitation of 
the DEA model is its deterministic nature: all differences to the frontier are interpreted as 
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inefficiencies, including those that result from general noise in the production process or general 
data and modelling issues, such as measurement error. The lack of a stochastic component also 
implies that it is not possible to calculate confidence intervals or other measures of uncertainty of 
the estimated inefficiency scores in a simple way. This bears the risk that overly strong conclusions 
might be made based on DEA efficiency estimates that could be quite volatile when estimated using 
a relative low number of observations relative to the number of cost drivers included in the 
modelling.25 Given that DEA is deterministic, it is also not possible to use the technique to estimate 
and test the relevance or statistical significance of individual cost drivers. Therefore, unlike 
parametric approaches, a separate tool or technique is required to determine the set of relevant 
outputs to be included in the DEA model.  

DEA variations 

This section presents two non-parametric extensions of the standard DEA that address some of the 
disadvantages identified above: Free Disposable Hull (FDH) and Bootstrap DEA. We discuss a 
semi-parametric extension – Stochastic DEA – in Section 3.3.3.  

Free Disposal Hull (FDH)  

The Free Disposal Hull (FDH) is a non-parametric technique closely related to DEA. FDH differs 
from DEA as it does not require an assumption of convexity (i.e. a linear combination of inputs and 
outputs of two firms in the sample does not need to be enveloped by the efficiency frontier). In the 
simple example of one input/one output, the removal of this assumption results in a stepwise 
efficiency frontier. Figure 9 Illustrates the FDH frontier and the determination of the level of 
inefficiency graphically. 

Generally the convexity of input and output sets is a common and well-founded assumption in 
economics.26 Furthermore, the frontier set by the FDH is less ambitious than the DEA frontier. 
Dropping the assumption of convexity has the material effect that efficiency scores of inefficient 
companies tend to improve by construction 

To our knowledge FDH is not applied in the context of cost benchmarking of gas and electricity 
network operators. 

 

 
25  We present a rule of thumb on the relationship between sample size and number of outputs in Section 5.3, Table 9. 

26  A short discussion of convexity in economic production theory is provided in Section 3.1. 
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Figure 9 Illustration of a FDH efficiency frontier 

 

Source: Frontier Economics 
 

Bootstrap DEA 

An important extension to the standard DEA framework is the bootstrap DEA developed by Kneip 
et al. (2008).27 It employs a bootstrap procedure to correct for bias in the efficiency scores (i.e. 
difference between estimated score and true efficiency score) and construct confidence intervals of 
the calculated efficiency scores, which can be used for hypothesis testing These confidence 
intervals account for uncertainties of the estimated inefficiency scores.  

The bootstrap procedure consists of three steps: 1) randomly re-sampling a subset of the data; 2) 
estimating a DEA on the resampled data (also known as bootstrap sample); 3) deriving metrics of 
interest (e.g. mean of efficiency scores). This procedure is repeated a number of times and summary 

 
27  Kneip, A., Simar, L., & Wilson, P. W. (2008). Asymptotics and consistent bootstraps for DEA estimators in nonparametric frontier 

models. Econometric Theory, 24(6), 1663-1697. 
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statistics of the metric of interest are calculated (e.g. the mean of the mean efficiency score). These 
summary statistics are used to correct for bias and calculate confidence intervals.  

Kneip et al. (2008) show that its bootstrap approach can be used to correct for the known bias of 
the DEA efficiency scores. The bootstrap bias is estimated as the difference between the 
bootstrapped efficiency scores (average scores from the bootstrapped samples) and the estimated 
DEA efficiency score. Kneip et al. (2008) demonstrate that this bootstrap bias can be used to correct 
for the bias between the estimate DEA efficiency scores and the (unobserved) true efficiency score 
(after making some adjustments, including adjusting for number of bootstrap samples). Intuitively, 
the bias exists because of limited sample size, where firms that are not truly efficient are estimated 
to be on the DEA efficiency frontier. The bootstrapping is an approach designed to mimic this 
heuristic of gaining additional data so that the estimated cost frontier can be shifted out to account 
for this observable compression that arises from only have a limited sample. 

Kneip et al. (2008)’s approach can also be used to estimate confidence intervals. Usually, a 
sufficiently large sample is required for the confidence intervals produced by the bootstrap to be 
sufficiently narrow to be useful in practical applications. 

See Annex B.1 for a more detailed discussion including formal representations of the bias 
corrected/bootstrap DEA. 

Other extensions attempt to also extend the DEA framework to explicitly allow for stochastic noise 
by combining it parametric approaches. These semi-parametric approaches, such as the stochastic 
DEA, are discussed below.  
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Figure 11 Illustration of bias corrected DEA 

 
Source: Frontier Economics 

 

MTFP and MPFP  

The multilateral total factor productivity (MTFP) is a non-parametric technique that determines 
relative efficiency of firms by comparing the output they produces to the inputs they used. Similarly 
to the DEA, outputs and inputs are aggregated using a set of weights. Different to the DEA, the 
weights used to aggregate inputs and outputs into a single variable are obtained from observed data 
such as the revenue and cost shares of outputs and inputs, respectively. 

The comparison of the relative efficiency between any two firms and over time is then obtained via 
their relative performance against a hypothetical firm that represents a sample average. The 
multilateral partial factor productivity (MPFP) follows the same approach as the MTFP, but only 
considers one input in the estimation (e.g. opex) rather than all inputs. 
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There are different approaches to estimate a MTFP index. For example, the Australian Energy 
Regulator (AER) considers the Caves, Christensen and Diewert (1982)28 (CCD) multilateral 
Törnqvist TFP  in the Australian electricity network regulation as supplementary benchmarking 
techniques for both electricity TSOs and DSOs. However, the AER does not use these techniques 
to set cost allowances (we describe this index in detail in the annex). Figure 10 shows the MTFP 
that the AER estimated for the electricity DSOs over time. The AER used this analysis to comment 
on productivity improvements. For example, it found that SA Power Networks (SAP) productivity 
has decreased between 2020 and 2021, while AusGrid (AGD) productivity has increased. The chart 
also shows that in 2021 SAP is more productivity than AusGrid (although the AER notes that not all 
operating differences are taken into account in the analysis and that some DSOs may operate in 
more or less favourable environments than others and thus appear more or less efficient). 

Figure 10 AER’s 2022 assessment of MTFP for electricity DSOs over time 

 
Source: AER’s 2022 Annual benchmarking report – electricity distribution network service providers.  

 

Usually, MTFP indices are designed to satisfy a number of desirable properties. For example, The 
CCD index satisfies the following two properties: 

 
28  Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). Multilateral comparisons of output, input, and productivity using 

superlative index numbers. The Economic Journal, 92(365), 73-86. 

file:///C:%5CUsers%5Csofia.bastante%5CAppData%5CLocal%5CMicrosoft%5CWindows%5CINetCache%5CContent.Outlook%5CCFJRPPPH%5CThis%20link%20with%20take%20you%20to%20this%20report
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■ It can be considered an approximation of a cost function (and corresponds to a Translog 
production function)29; and 

■ The relative performance between any two firms is not dependent on the base firm against 
which the comparison is conducted.30,31 

These properties are desirable. The first property indicates the MTFP/MPFP approach has a close 
link to economic production theory. The second properties makes it easy to compare efficiency 
across companies, compared to other indices (e.g. total factor productivity (TFP)). Other advantages 
of the MTFP index are that it can generally be applied quite flexibly, it is transparent and it is also 
applicable to small data samples. If the required input and output data is available, the calculation 
and updating of the index is also easily done. 

There are also some challenges associated with the use of MTFP for efficiency benchmarking. One 
challenge is that the index (as most index techniques) is sensitive to the choice of weights used to 
aggregate outputs and inputs into univariate indices. Another challenge is that in line with other non-
parametric approaches, the MTFP does not allow for noise in the production process. 

3.3.3 Semi-parametric techniques 

Stochastic DEA 

Stochastic DEA attempts to mitigate concerns over the lack of noise in the classic DEA estimator 
while incorporating axioms of production in a nonparametric fashion.32  

The standard version consists of two steps: first, a parametric stochastic frontier model is estimated 
and efficient inputs (costs) are derived from this model; second, a frontier is estimated by fitting a 
DEA on the set of outputs and efficient inputs from the first step.  

 
29  Indices that can provide a second order approximation of a cost function are called ‘superlative’. A second order approximation 

means that the highest power in the series expansion used in the approximation is 2 (i.e. only linear and quadratic terms used in 
approximating the cost function). 

30  This property is called ‘transitivity’. 

31  See Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). Multilateral comparisons of output, input, and productivity using 
superlative index numbers. The Economic Journal, 92(365), 73-86. 

32  See Annex B.1 for a more detailed discussion including formal representations of the stochastic DEA. 
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A key challenge with stochastic DEA is which parametric model should be used in the first step. 
Another challenge is that there are several different proposed versions of stochastic DEA,33 but  
theoretical or empirical guidance as to which approach to deploy in practice is limited.  

It is not clear at present if any form of stochastic DEA has been applied in a regulatory context.  

StoNED and related approaches 

A limitation of the SFA and related parametric approaches is that cost functions typically estimated 
are assumed to be linear in parameters (i.e. the function can be expressed as the sum of parameters 
multiplied by a variable. Parameters cannot appear as exponents or cannot be squared, however 
variables can). The Stochastic Non-parametric Envelopment of Data (StoNED) approach addresses 
this limitation by estimating the frontier non-parametrically under the constraint that certain axioms 
of production are satisfied (monotonicity and convexity). At the same time StoNED keeps the 
stochastic nature of the SFA by including an error term which can be decomposed into inefficiency 
and random noise. The decomposition is implemented by making some parametric assumptions on 
the distribution of the errors. The stochastic nature is also what differentiates StoNED from the group 
of purely non-parametric approaches such as DEA.  

Let 𝑚(𝑥�) denote the conditional mean function of the stochastic frontier model. The regression 
equation of interest for the application of StoNED and related approaches is: 

𝑐� = 𝑚(𝑥�) + 𝑢� + 𝑣�. 

The estimation is similar to the SFA estimation with the use of the PI estimator.34 First, StoNED 
estimates 𝑚(𝑥�) non-parametrically without accounting for the non-zero mean of the error term 𝜀� =
𝑢� + 𝑣� (this leads to an upward bias in the conditional mean function). StoNED estimates 𝑚(𝑥�) 
non-parametrically by concave non-parametric least squares (CNLS) under the additional constraint 
that axioms of monotonicity and convexity are satisfied. Second, the model residuals are used to 
estimate the parameters of the distribution functions of 𝑢� and 𝑣� under the same type of 
distributional assumptions that are used in SFA.  

 
33  See for instance Banker, R. D., & Maindiratta, A. (1992). Maximum likelihood estimation of monotone and concave production 

frontiers. Journal of Productivity Analysis, 3(4), 401-415.. Simar, L., & Zelenyuk, V. (2011). Stochastic FDH/DEA estimators for 
frontier analysis. Journal of Productivity Analysis, 36, 1-20. 

34  In fact, the plug-in likelihood approach has first been developed and applied as part of the StoNED related literature (it was first 
introduced by Fan, Y., Li, Q., & Weersink, A. (1996). Semiparametric estimation of stochastic production frontier models. Journal 
of Business & Economic Statistics, 14(4), 460-468.) 
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Figure 11 compares a StoNED frontier with a true frontier in a simulated sample with two outputs. 
For the specific simulation used in the example, StoNED is found to approximate relatively well the 
true efficiency frontier. 

Figure 11 Illustration of StoNED in a two output example 

 
Source: Timo Kuosmanen (2014), StoNED method in benchmark regulation, BNA conference. 

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelt
e/Evaluierung_ARegV/Wissenschaftskonferenz/ARegV_WK20140527_S2-2_Kuosmanen-StoNED-Method-in-Benchmark-
Regulation.pdf?__blob=publicationFile&v=2  

The StoNED model is closely related to two alternative semi-parametric models with similar 
properties. The first related model is the one by Fan, Li & Weersink (FLW).35 The authors developed 
the two-step PI approach to the estimation of 𝑚(𝑥�) using kernel smoothing, without imposing any 
axioms of production in the estimation. The second related models is Parmeter and Racine (2012).36 

 
35  Fan, Y., Li, Q., & Weersink, A. (1996). Semiparametric estimation of stochastic production frontier models. Journal of Business & 

Economic Statistics, 14(4), 460-468. 
36  Parmeter, C. F., & Racine, J. S. (2013). Smooth constrained frontier analysis. In Recent Advances and Future Directions in 

Causality, Prediction, and Specification Analysis: Essays in Honor of Halbert L. White Jr (pp. 463-488). 

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Evaluierung_ARegV/Wissenschaftskonferenz/ARegV_WK20140527_S2-2_Kuosmanen-StoNED-Method-in-Benchmark-Regulation.pdf?__blob=publicationFile&v=2
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Evaluierung_ARegV/Wissenschaftskonferenz/ARegV_WK20140527_S2-2_Kuosmanen-StoNED-Method-in-Benchmark-Regulation.pdf?__blob=publicationFile&v=2
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Evaluierung_ARegV/Wissenschaftskonferenz/ARegV_WK20140527_S2-2_Kuosmanen-StoNED-Method-in-Benchmark-Regulation.pdf?__blob=publicationFile&v=2
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Parmeter and Racine also imposed axioms of monotonicity and convexity on the estimation, and 
used kernel based methods for the estimation of 𝑚(𝑥�). 

Generally, the three semi-parametric approaches are closely related and can be expected to 
perform similarly in practical cost benchmarking applications. Table 4 provides an overview of the 
approaches. The primary difference lies in the non-parametric method used to estimate 𝑚(𝑥�):37 

■ FLW uses kernel regression. Kernel regression essentially runs weighted least squares, where 
the weights depend upon the distance of an observation to the point of interest. This distance 
is controlled by a bandwidth. For a larger bandwidth, points further away receive greater weight. 

■ StoNED uses convex non-parametric least squares (CNLS). CNLS is quite similar to DEA. Line 
segments (facets) are built such that the estimated function satisfies both monotonicity and 
convexity, while also ensuring that the resulting error term has mean 0. This last condition is 
what distinguishes DEA from CNLS. DEA encapsulates the data while CNLS estimates a 
conditional mean model. 

■ Parmeter/Racine uses constrained kernel regression. This procedure is very similar to FLW. 
The only difference is that a second weight is introduced that modifies the original estimator 
whenever various constraints (here monotonicity/convexity) are violated. The change in the 
weight is driven by how much the constraint is violated. 

A notable difference is the imposition of axioms of production on the non-parametric estimation, 
which is not part of the FLW approach. There is a general decision regulators have to make, whether 
they want to maintain these axioms in the cost benchmarking study. An advantage is that the axioms 
represent plausible properties of cost functions. The assumptions are also commonly applied in 
other non-parametric techniques such as DEA to provide some basic structure to the production 
technology. However, the data can differ from the ideal cost function, for instance because 
measurement error results in the cost function being represented imprecisely in the data. In that 
case, the additional structure imposed on the non-parametric estimation can lead to inconsistent 
estimates of the cost frontier. 

The major advantage of the non-parametric approaches compared to SFA is that no functional form 
has to be assumed on 𝑚(𝑥�) (i.e. it is not necessary to decide a priori whether the relationship 
between cost and cost drivers follows a Cobb-Douglas or Translog function. It thus reduces the risk 
of obtaining inconsistent estimates due to functional form misspecification. The drawback from the 
greater flexibility is that the methods become more complex and difficult to understand. While SFA 

 
37  A more detailed discussion of the FLW, StoNED and Parmeter & Racine approach that also includes formal representations is 

provided in Annex B.1. 
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is still based within the standard OLS framework, the application of StoNED and related approaches 
requires techniques that are likely new for regulators and regulated operators.38  

StoNED has been applied in Finland for benchmarking of electricity DSOs since 2012, so there is 
regulatory precedent. Given the high similarity between the three methods (FLW, StoNED, 
Parmeter/Racine), lessons learnt from the practical application of StoNED from Finland could be 
taken into account when applying the FLW and Parmeter/Racine approaches. 

Table 4 Overview of StoNED and related approaches 
 

 FLW StoNED Parmeter/Racine 

General estimation 
approach consists of 
three steps 

1. Estimate cost frontier non-parametrically. Estimation will lead to 
biased results as the conditional error does not have mean zero due 
to the one-sided distribution of inefficiency that has not been 
accounted for. 

2. Make distributional assumptions on the distribution of error terms to 
estimate the distributional parameters on the non-parametrically 
estimated residuals. 

3. Shift the conditional mean by the estimated mean of inefficiency to 
correct for the bias in the first step. 

Estimation method in 
Step 1) 

Kernel regression Concave non-
parametric least 
squares 

Constrained kernel 
regression 

Axioms of production 
imposed on Step 1) 

None Monotonicity and 
convexity 

Monotonicity and 
convexity 

Regulatory precedent None Finland None 
 

Source: Frontier Economics 

 
38  For a discussion on this topic, refer to Andor, M., & Hesse, F. (2014). The StoNED age: the departure into a new era of efficiency 

analysis? A Monte Carlo comparison of StoNED and the ‘oldies’ (SFA and DEA). Journal of productivity analysis, 41, 85-109. 
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3.4 Engineering-based techniques 

Engineering models or assessments 

Engineering assessments can be applied for an assessment of incurred or expected costs for 
capital-intensive investment projects. Engineering based approaches that involve aspects of 
network planning typically focus on the investment cost and capital expenditure required. To assess 
the efficiency of totex, assumptions would need to be made regarding the relationship between 
certain asset types and operating expenditures (e.g. for maintenance purposes). 

The investment projects considered can differ in size and type. For example, these investment 
projects could consists of large load-related investment projects into new transmission assets (lines, 
transformer stations), large non-load related investment projects in replacement of specific assets 
(e.g. a maintenance program for replacement of a specific cohort of transformer stations), and non-
load related investment projects in asset replacement.  

The engineering assessment requires technical expertise to evaluate the optimal design, need, and 
costs for such investment projects. As energy regulators typically lack the specific knowledge, this 
assessment is normally undertaken by technical consultants having the practical knowledge from 
planning and implementing similar projects. The assessment includes various instruments. For 
example, unit costs can be used to assess the cost efficiency of the incurred/expected costs 
provided by the network operator; statistical analysis can be used to assess the need for 
replacement investments (e.g. assessing the ratio between fault of components and their age); and 
engineering planning can be used to assess the configuration of a specific large investment project 
(e.g. dimensioning of lines and transformers). 

The advantage of engineering assessments is that if the technical consultant can draw on 
knowledge from similar projects, then no direct comparators are required . In regulatory applications 
(partly) relying on information from other network operators on comparable projects may be 
necessary for the acceptance of the results by network operators, for example when assessing 
certain unit costs Engineering assessments allow a disaggregated view on incurred/expected costs 
which should help in identifying potential inefficiencies for specific cost items.  

Engineering assessments can be considered a regulatory tool related to micro-management as they 
require detailed data from the network operators which is necessary for the in-depth assessment of 
projects (e.g. a breakdown of volumes, unit costs used, justification of projects). Providing and 
assessing this data can be time-consuming for network operators and regulatory authorities. The 
results on allowed costs usually rely on the expertise from technical consultants, which may partly 
draw upon non-public proprietary information from other projects or their subjective assessment. 
Hence, there may be issues with transparency. 
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Ofgem used engineering assessments as part of the disaggregated benchmarking of the cost 
activities for electricity distribution operators in RIIO ED2.39 A key component of the activity-level 
cost assessment was the engineering review of operators’ so-called ‘Engineering Justification 
Papers’ (EJPs). The purpose of the EJPs was to provide justifications for load related and non-load 
related investments. Ahead of the assessment, Ofgem published guidelines40 on the content and 
covered investment projects for EJPs. Each of the operators’ EJPs was reviewed and cross 
referenced against other supporting documents. The engineering assessment of an EJP led to one 
of three outcomes: (i) justified; (ii) partially justified; and (iii) unjustified. Ofgem then decided whether 
to allow the investment based on this assessment. 

Process benchmarking 

Process benchmarking41 is a technique for comparing processes of operators. These can be 
processes across departments, operators with similar objectives, or operators that have different 
tasks but use comparable processes. The key objective is to identify, and then implement, ways of 
improving an operator’s processes. The efficiency of processes is assessed by key performance 
indicators (KPIs), which may include PPIs and unit costs. 

Process benchmarking is implemented on a disaggregated cost level. It goes a step further 
compared to PPI as it not only compares the ‘cost per activity’ (i.e. maintenance costs / network 
length) but also the underlying processes for the activity. For example, attending an incident involves 
the following high-level processes:  maintenance team is informed of the incident, the team 
approaches the incident, the team addresses the incident. For each of these processes an 
assessment could be made around costs incurred considering time required, number of full time 
employees involved, resources used, etc.  

Process benchmarking is a regulatory instrument related to micro-management as it requires 
detailed data from the network operators. When applied to a particular operator, process 
benchmarking considers a group of processes of that operator. The group of processes has to be 
clearly separated from other processes to enable a proper comparison between companies. For 
processes that are comparable across operators, it may be possible to benchmark the processes 
by collecting data from the operators, using benchmarks of KPIs from publicly available sources 

 
39  Ofgem. (2022). RIIO-ED2 Final Determinations Core Methodology Document. https://www.ofgem.gov.uk/sites/default/files/2022-

11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf  
40  Ofgem. (2021, February). Engineering Justification Papers for RIIO-ED2. 

https://www.ofgem.gov.uk/sites/default/files/docs/2021/02/riio_ed2_engineering_justification_paper_guidance.pdf  
41  For more details on process benchmarking we refer to: E-Bridge. (2012). Study of the feasibility of determining TenneT’s cost 

efficiency via process benchmarking: Study for Nederlandse Mededingingautoriteit (NMa). 

https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf
https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf
https://www.ofgem.gov.uk/sites/default/files/docs/2021/02/riio_ed2_engineering_justification_paper_guidance.pdf


BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    52 

 

 
 
 

(potentially from other sectors), or asking specialised consultants to identify relevant benchmarks. 
The more sector-specific the processes the less the analysis can rely on data from other sectors. 

The main advantage of process benchmarking is that it can provide in-depth information on 
operators’ performance on a disaggregated level and where any inefficiency might be coming from. 
The drawback is that it can be time-consuming and complex to identify like-for-like operators, define 
like-for-like processes, and gather like-for-like data. For example, different accounting principles 
(e.g. allocation of costs to specific processes) can distort the results. If participants consider the 
benchmarking process to be non-transparent or unpredictable, they will tend to be hesitant to accept 
the outcome. 

Reference Network Analysis (RNA) 

RNA is an analytical cost model approach which consists of designing concrete, optimal networks 
for real transport and supply tasks.42,43 It can be used to assess the price tag of existing and  planned 
physical networks. RNA can be applied as a ‘greenfield’ or ‘brownfield’ approach. A pure ‘greenfield’ 
approach ignores the existing network and builds a new network from scratch. A ‘brownfield’ 
approach recognises the history of the network development and retains certain parts of the existing 
grid as a constraint in the optimisation. In either case, the costs of building the network required 
according to the RNA model can be used as a benchmark for the actual costs of an electricity or 
gas network.  

The application of RNA can be divided in three stages: 

■ First, the researcher identifies the key elements of the transport and supply task at hand, which 
is typically understood to be, at a minimum, the location and size of infeeds and offtakes of the 
network. 

■ Second, based on these key elements, the researcher designs an optimal network specification 
(e.g. optimal amount of network length, distance between customers and substations, etc.). 
This is generally done using network planning models based on engineering rationale. 

■ Third, a price is assigned to each asset of the network specification, generally based on 
annuities. Total capital costs are then derived from these prices. Operating costs can 
sometimes be derived using a markup on capital costs. 

The results from the RNA can be used for efficiency benchmarking in three ways: 

 
42  RNA models in the telecommunication sectors are sometimes called BULRIC (bottom-up long-run incremental cost). 

43  For more details on RNA we refer to: Frontier Economics/Consentec. (2012). The potential application of reference network 
modeling to TenneT: Feasibility study for NMa. 
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■ Absolute reference model: the operator in question is compared directly against the cost 
derived from a reference model. 

■ Relative reference model: a number of operators are modelled and for each the ratio of actual 
cost to modelled cost is constructed. Operators are then assessed on the basis of this ratio, 
e.g. requiring all operators in the sample to get ‘as close’ to their optimal model as the best 
performing operator. 

■ Input to another benchmarking technique: in principle a reference model can be used as an 
approach to derive structural variables that capture the ‘scale’ of the transport and supply task. 
Interpreted in this way, these variables can be used as input (i.e. serving as operators’ output 
parameter or structural parameter) to another benchmarking technique. 

A key advantage of RNA for cost benchmarking is that it can be applied in situations in which there 
is a lack of information that would allow a comparative analysis. This can for instance be the case if 
there is only a low number of comparable firms or if a specific type of investment is so new that no 
comparable projects exist. The procedure can also be a useful approach to cover the heterogeneity 
of network operators and derive cost drivers explaining the supply tasks of operators. That is also 
the reason why results from RNA are used as input to other benchmarking techniques. For example, 
one of the key differences between network operators is density, i.e. whether they serve an urban 
or rural area. RNA can be used to identify the relationship between the network length that you 
would need to serve an area with a given density. This ‘modelled’ network length variable can then 
be used as a cost driver for other benchmarking technique. 

A major caveat of the approach is that there can be high costs in terms of the amount and detail of 
data required for the analysis and the effort that has to go into the modelling. This is particularly true 
if only a few or no comparable firms exist and the analysis has to be carried out in a detailed way to 
obtain reliable numbers for every step of the modelling. 

Currently, no European energy regulator uses RNA as a benchmarking technique for DSOs. The 
experiences from the Swedish regulator with the Network Performance Assessment Model (NPAM) 
were not that convincing as it has led to serious conflicts between the regulator and a number of 
utilities resulting in lengthy legal proceedings involving court rulings and appeal cases. The NPAM 
was only applied from 2003 to 2006.44 However, RNA is currently applied for benchmarking of 
electricity TSOs in Germany45. 

RNA aims to construct a detailed model of the layout of the network (i.e. creating a detailed spatial 
model) making use of a considerable body of data (e.g. spatial demand and generation profiles, 

 
44  Jamasb, T., & Pollitt, M. (2007). Reference Models and Incentive Regulation of Electricity Distribution Networks: An Evaluation of 

Sweden’s Network Performance Assessment Model (NPAM). EPRG Working Paper. 
45  For details we refer to the case study ‘Germany – Electricity TSOs’ in section 7.5. 
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transmission line routes, standardised network assets). Another approach is the so-called Model 
Network Analysis (MNA). The MNA approach makes a number of simplifying assumptions in order 
to reduce the complexity of the model and the volume of data that is required to undertake the work. 
Both approaches produce an optimal network specification, but differ with regards to the details of 
the network. In particular, MNA can be used to gain a deeper understanding of how the supply task 
of a given operator’s service area might be expected to impact its network configuration and hence 
its costs.  

For example, MNA46 has been used successfully in this narrower role in Austria by E-Control for 
electricity DSOs, where stylised models of the networks were developed in order to provide proxy 
variables (modelled network length, by voltage level) that captured connection density. These proxy 
variables were then used in other benchmarking techniques (DEA, MOLS) to assess electricity 
DSOs’ efficiencies.47 An approach of this kind ensures that important structural effects can be 
captured robustly using variables that are not under the direct control of the operators. For this 
application the data requirements are less strict as compared to using RNA as a benchmarking 
technique. MNA was also applied by Bundesnetzagentur to identify and sense check the cost drivers 
for the benchmarking analysis for electricity and gas DSOs. 

 
46  E-Control did not apply RNA for this task but the less complex Model Network Analysis (MNA).  

47  See for example this E-Control report. https://www.e-control.at/documents/1785851/1811528/Entscheidungen-der-
Regulierungsbehoerde-Ausgestaltung-3te-Periode-Strom.pdf/225b49e0-6534-40e4-afa1-97d83f8edbde?t=1413905499198  

https://www.e-control.at/documents/1785851/1811528/Entscheidungen-der-Regulierungsbehoerde-Ausgestaltung-3te-Periode-Strom.pdf/225b49e0-6534-40e4-afa1-97d83f8edbde?t=1413905499198
https://www.e-control.at/documents/1785851/1811528/Entscheidungen-der-Regulierungsbehoerde-Ausgestaltung-3te-Periode-Strom.pdf/225b49e0-6534-40e4-afa1-97d83f8edbde?t=1413905499198
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4 Evaluation of the long list of benchmarking techniques 

In this section we summarise our approach to move from the long list of techniques to the short list. 
We first describe the approach that we use to short list benchmarking techniques and then present 
our evaluation of the long list of techniques. 

4.1 Our evaluation approach 

We have used  four criteria to short list the long list of benchmarking techniques: 

■ Promotion of efficiency 

■ Transparency 
■ Applicability 

■ Robustness. 

We identified these criteria by considering ACM’s regulatory context and expected future 
challenges, described in Section 2.2, as well as benchmarking best practice. 

Promotion of efficiency 

This criterion is used to assess whether a technique is able to: 

■ Identify historical cost efficiencies; 
■ Potentially identify areas for efficiency improvements. This is to address one of the implications 

of CBb’s ruling; and 

■ Account for future efficiency considerations, e.g. to ensure that necessary investments into the 
energy transition are not disincentivised. 

The benchmarking techniques we included in our long list could all be used to determine the relative 
efficiencies of TSOs and DSOs. However, some techniques might be better suited at identifying 
historical cost efficiencies, and others better placed at identifying areas for efficiency improvements. 
The other components of the benchmarking analysis (costs, cost drivers, data) also play a role in 
this (e.g. future efficiency could be determined by estimating a COLS on a sample that includes 
forecast data or by using a historical dataset but including appropriate forward-looking cost drivers). 
We consider this combination of factors when applying this criterion to evaluate the long list. 

4.1.2 Transparency 

This criterion is used to assess whether a technique can be considered transparent along two 
dimensions: 
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■ The technique is well understood, including its key assumptions and implications for the 
estimation of efficiency. 

■ The results from the techniques can be replicated by interested third parties (e.g. the TSOs 
and DSOs). This requires that the data used and potentially the implementation of the technique 
be made available to those third parties or their advisors. Simpler techniques are usually easier 
to replicate. 

Transparency can increase the confidence that the regulators as well as the TSOs and DSOs place 
on the results of the techniques. For example, if the impact of key assumptions is well understood 
(e.g. because there is extensive regulatory precedent), the regulator is in a position to make better 
use of its results (e.g. if efficiencies are known to be biased the regulator could adjust them). 

Transparency can also improve how TSOs and DSOs engage with benchmarking. This could 
ultimately lead to a better benchmarking process, from model development to understanding which 
conduct is rewarded and which is disincentivised. 

Ensuring the transparency of the technique was one of the key implications of CBb’s ruling.  

4.1.3 Robustness 

This criterion pertains to whether the results of a technique are likely to remain more or less the 
same as some of the underlying assumptions (e.g. choice of distribution of inefficiency) or data are 
changed slightly (e.g. use of different proxies for the same cost drivers; addition of one year of data; 
removal of one comparator). 

Robust techniques are likely to be more useful to regulators and the sector, because regulators can 
be more confident about their findings and the acceptance by operators of results should increase. 
If the results of a technique strongly depend on a specific assumption or change significantly with 
small changes in the data, it is possible that these results will be questioned and potentially 
overturned on appeal. 

4.1.4 Applicability 

This criterion is used to assess the feasibility of implementation of a technique. We consider three 
dimensions: 

■ Data requirements. We consider whether the data required for the technique is publicly 
available or can be collected, and whether the quality of the data is sufficient. 

■ Sample size. We consider the sample of comparator firms that is required to implement the 
technique. Some techniques require a larger sample size than others. 
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Proportionate resource costs. We make some qualitative considerations around the resources that 
ACM will likely require to apply a specific technique and related components of the benchmarking 
analysis (e.g. collecting a sample of comparators, identifying cost drivers, testing robustness, 
deciding how to use the results of the benchmarking analysis).  

4.2 Our short list of techniques 

The table below shows our short list of benchmarking techniques. We first provide a summary of 
our rationale for selecting these techniques. We then present a table that explains for each 
technique the key reasons for its inclusion or exclusion from the short list. 

Table 5 Our short list of benchmarking techniques 

Group Sub-group Technique 
Descriptive 
technique 

Performance 
indicators 

Partial Performance Indicators (PPIs) 

Mainly based 
on economic 
theory 

Parametric Corrected OLS (COLS), Modified OLS (MOLS) 
Stochastic Frontier Analysis (SFA) 

 Non-parametric Data Envelopment Analysis (DEA) 
Bootstrap DEA 

 Semi-parametric Stochastic non-smooth envelopment data (StoNED) 

Mainly based 
on 
engineering 
rationale 

Engineering 
based 

Engineering models 
Reference Network Analysis 

 
 
 

Source: Frontier Economics 

4.2.1 Summary of our reasoning for the short list 

We selected a subset of techniques within each of the groups from Section 3. The key reason for 
this is that techniques within each group have some unique advantages compared to other groups: 
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■ Descriptive techniques. These techniques can be used for an exploratory analysis that serves 
as input for more complex techniques as well as to identify where inefficiency is coming from. 

■ Economic-based techniques. These techniques can be used to make an assessment of 
overall efficiency in a relatively simple and transparent way. Within this group, each of the 
parametric, semi-parametric, and non-parametric techniques has its own advantages and 
disadvantages. 

■ Engineering-based techniques. These techniques could be particularly useful in 
understanding the efficiency of costs of new investment projects or costs related to new 
activities, especially when historical data is scarce. 

Within each group, we apply our evaluation criteria to short list the techniques and select those 
techniques that, on balance, meet most of the criteria. We also give weight to whether there is 
precedent for the use of a technique in the regulation of TSOs and DSOs. 

Amongst descriptive techniques, we shortlisted PPIs. We consider that PPIs complement the 
parametric and non-parametric techniques as they could be used to either identify where the 
inefficiency might be coming from or benchmark some specific large investment projects.  

For the parametric, semi-parametric, and non-parametric techniques we have selected those 
techniques that we consider score relatively well on all of the evaluation criteria and that have been 
used in other regulatory contexts. There are pros and cons to each of these techniques and there 
is merit in combining results of techniques from different groups. We discuss this in Section 6.  

Amongst engineering-based techniques, we selected engineering models and RNA. Similarly to 
PPIs, engineering models could be used to either identify where the inefficiency might be coming 
from or benchmark some specific large investment projects. RNA and process benchmarking 
require a detailed engineering and business understanding of the networks and their processes. We 
consider that the benefits that these two techniques might bring compared to other techniques in 
the short list are likely to be outweighed by the resources required to implement these techniques 
and validate the results. ACM is interested in exploring RNA in more detail. Therefore we included 
it in our short list.  

Key reasons for inclusion or exclusion from short list 

In the table below we have summarised the key reasons for inclusion in or exclusion from the short 
list. 
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Table 6 Summary of our evaluation by technique 
 

Technique Short-
list 

Key reason for inclusion in/exclusion from short list 

Parametric   

OLS No Does not allow to identify efficiency frontier. 

COLS Yes No statistical uncertainty included when determining efficiency 
frontier. However, there is regulatory precedent (e.g. in the UK and 
Australia) and the technique is well understood. 

MOLS Yes Compared to OLS and COLS, allows to determine efficiency frontier 
including a measure of statistical uncertainty based on the 
distribution of the error terms. There is regulatory precedent (e.g. E-
Control applies MOLS for benchmarking of electricity and gas 
DSOs).  

SFA Yes Compared to MOLS, it allows to split the error term between 
inefficiency and random noise. However, it is more data intensive 
than MOLS. There’s regulatory precedent for this technique (e.g. 
Bundesnetzagentur applies SFA for benchmarking of electricity and 
gas DSOs; the AER applies SFA for electricity DSOs).  

Quantile 
regression 

No From a conceptual point of view, it is similar to COLS. It not only 
shares the disdavantages of COLS  (not allowing for statistical 
uncertainty and requiring some regulatory judgement to set the 
frontier), but there is also no regulatory precedent and it is less well 
understood. Given that COLS is included in the short list we 
therefore exclude quantile regression from the short list.  

Four random 
component SFA 

No Compared to SFA, it allows to further split the error term between 
short and long run sources of inefficiency, heterogeneity, and 
random noise. It is more data intensive than SFA. It is necessary to 
make assumptions with regards to the four components ( 
distribution of inefficiencies, etc.) which makes the technique more 
complex and assumption driven. As far as we are aware there is no 
regulatory precedent for this technique. Given these downsides we 
excluded it.  

Non-
parametric 
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Technique Short-
list 

Key reason for inclusion in/exclusion from short list 

DEA Yes Compared to MOLS and SFA it does not require assumptions on 
functional forms. By construction, efficiency increases with number 
of inputs/outputs included and decreases with number of 
observations. In theory, it requires only a small sample, but in order 
to get reasonable results the technique requires a large enough 
sample. We included DEA as it addresses some of the 
disadvantages of parametric approaches (although it has its own 
disadvantages), is simple to understand and there is regulatory 
precedent for the application. 

Bootstrap DEA Yes This is similar to DEA. Key difference is that it attempts to 
understand the distribution of efficiency scores and potentially 
adjusts for biases. The confidence intervals around the efficiency 
scores that this technique produces are potentially large. We 
included it in the short list as an additional technique for sensitivity 
checks to DEA. 

MTFP/MPFP No Could be compared to unit cost models as MTFP/MPFP can be 
seen as a ratio of an output index and an input index. Index 
measures are sensitive to the choice of the weights used to 
determine the output and input index. The advantage is that it does 
not require a large sample. MTFP/MPFP is normally used as a 
method to determine dynamic efficiencies (i.e. changes in 
productivity) and not static efficiencies. Other techniques such as 
DEA and MOLS are designed to identify static efficiencies. There is 
no regulatory precedent of using MTFP or MPFP to set catch-up 
efficiencies (the AER in Australia considers it, but it does not use it). 

Semi-
parametric 

  

Maindiratta, 
FLW, Parmeter 

and Racine  

No These techniques are similar to StoNED/DEA, but – to our 
knowledge - have not  been applied in a regulatory context yet. The 
models therefore are also not available in commercial statistical 
software.  For these reasons, we excluded them from the short list 
(and included the related StoNED approach instead).  

Stochastic 
FDH/DEA 

No This is a two step approach, where both stochastic and non-
stochastic benchmarking models are applied in sequence to ensure 
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Technique Short-
list 

Key reason for inclusion in/exclusion from short list 

that monotonicity and convexity are satisfied. There is no regulatory 
precedent. We excluded them from the short list. 
 

StoNED Yes This is similar to FLW in terms of implementation. The difference is 
that there is regulatory precedent (Benchmarking of electricity 
DSOs in Finland) and it is available in commercial software. 

Performance 
indicators 

  

Partial 
Performance 

Indicators (PPI) 
(which includes 

unit cost 
models) 

Yes We propose to define PPI in a wider sense, to include PPIs based 
on aggregated costs (e.g. total opex) or disaggregated costs (e.g. 
maintenance opex, planning opex, investments). PPI does not allow 
to identify overall efficiency. However, it can be useful to identify 
where inefficiency comes from and does not necessarily require an 
international sample. This technique could complement top-down 
techniques like MOLS and DEA. 

Engineering-
based models 

  

Reference 
network 

analysis (RNA) 

Yes This technique relies on detailed engineering models. Because of 
its complexity it may not be considered transparent by all 
stakeholders. Also, detailed data are required. These may not be 
made publicly available or shared with all interested parties. We 
consider it too resource intensive to collect data, implement and 
validate.  

We included this technique as ACM expressed interest in 
understanding the potential advantages and disadvantages of RNA 
in more detail . 

Process 
benchmarking 

No This technique analyses the different processes for a certain 
activity. It uses a number of techniques, including engineering 
models, unit costs, and other PPIs to understand specific 
processes. We think it is too resource intensive to implement and 
validate to be used to inform high-level efficiency estimates. 

Engineering 
models 

Yes Engineering models allow to assess the efficiency of specific 
processes or activities, e.g. the efficiency of specific large 
investments or whether a replacement investment program is cost-
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Technique Short-
list 

Key reason for inclusion in/exclusion from short list 

efficient. They do not allow to identify overall efficiency. However, 
this technique could complement top-down techniques like MOLS 
and DEA. 

 

Source: Frontier Economics. 
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5 Comparative analysis of short-listed techniques 

In this section we undertake an in-depth comparative analysis of the short-listed techniques against 
each of the four evaluation criteria from Section 4. In Table 7 we list the questions that we have 
considered and summarise our findings. 

Table 7 Summary of findings of comparative analysis 
 

Criterion Question Findings 
Promotion of 
efficiency 

Which technique 
should be used to 
benchmark a given 
cost category? 

■ Econometric techniques likely more appropriate 
for high-level cost categories and business as 
usual activities 

■ Engineering models and RNA likely more 
appropriate for lower-level business as usual 
activities, or new activities (especially where 
significant new investments can be anticipated) 

 Which technique 
can be used to 
identify where 
inefficiency is 
coming from? 

■ PPIs can provide a high level indication and are 
relatively simple to implement 

■ Econometric techniques can be applied to 
disaggregated cost data, but usually the quality of 
disaggregated data is lower 

■ Engineering based models can be used for 
specific activities 

Transparency Which technique is 
more transparent? 
 

■ More transparent: PPIs, simple engineering 
models, econometric models (COLS, MOLS, SFA, 
DEA, StoNED). We consider that all these 
econometric models are transparent as the 
implementation of the model is clear. However, 
DEA and StoNED might be considered less 
transparent as they do not show the relationship 
between costs and cost drivers as explicitly as the 
other models. There is also limited precedent in 
the use of StoNED. 

■ Less transparent: complex engineering models, 
RNA 
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Criterion Question Findings 
Applicability What is an 

appropriate sample 
size? 

■ Econometric techniques require a larger sample 
size than engineering models, RNA and PPI 
(particularly relevant since sample sizes may be 
small in the Dutch context) 

 How to account for 
heterogeneity? 

■ All techniques can account for heterogeneity. This 
can be done within the technique or by adjusting 
cost data ex-ante or results ex-post. 

 How to account for 
economies of 
scale? 

■ Econometric techniques (e.g. DEA, SFA) and 
PPIs can be used to estimate economies of scale 

■ Economies of scale can be assumed for all 
techniques 

 Which technique 
can be used with 
forecast data? 

■ All techniques can accommodate forecast data, 
which can either be included directly in the 
estimation or used to forecast efficient allowances 

 Which technique is 
likely to be more 
resource intensive? 

■ PPI is the least resource intensive, followed by 
economic-based models. Complex engineering 
models and RNA are the most resource intensive 

Robustness How do you ensure 
robustness? 

■ By ensuring good data quality and testing results 
of models for small variations in data and 
assumptions 

 

Source: Frontier Economics 

5.1 Promotion of efficiency 

Which technique should be used to benchmark a given cost category? 

The technique to use to benchmark a given cost category depends on how the cost category is 
classified. Costs incurred by a business can be classified according to two key dimensions: 

■ Type of costs – whether the cost is due to business-as-usual activities or new/bespoke 
activities; 

■ Level of disaggregation – whether the cost represents a specific activity (lower level of 
aggregation) or a group of activities (higher level of aggregation). 

For business-as-usual activities, the relationship between cost and cost drivers is well understood. 
This is because the operators have been undertaking the activity for some time. Hence, it is also 
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likely that comparative data exists to benchmark the costs driven by these activities. Given that 
comparative data is likely to be available, it is possible to benchmark these activities using 
economic-based models.  

For new or bespoke activities, the relationship between cost and cost drivers might not be well 
established. For example, because the operator is inexperienced. Even if the operators have an 
understanding of this relationship, if the activity is unique to a small subset of operators, information 
asymmetries might make it more difficult for the regulator to establish this relationship. Also, where 
a new activity only commenced recently, it may not yet show in the available data at all or only to 
such an extent that it cannot be distinguished from noise. Therefore, to benchmark the costs driven 
by these types of activities engineering-based models or RNAs might be more appropriate. 

The level of disaggregation can also affect which techniques to use. For lower levels of aggregation, 
PPIs or simple econometric or engineering models might be better suited than more complex 
economic-based models. The reason for this is that economic-based models require a sample of 
comparative data and results depend on the quality of data. At lower levels of aggregation, it may 
be more difficult to collect precise data or ensure that operators allocate costs and cost drivers to 
disaggregated activities in a comparable way. For example, operators might follow different 
accounting practices to allocate overheads between different activities or some operators might 
prefer equally efficient opex solutions to capex solutions.  

Figure 12 illustrates which techniques are usually better suited at benchmarking costs along the two 
dimensions (type of costs, level of disaggregation). 
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Figure 12 Techniques by cost category 

 
Source: Frontier Economics  

 

For a given cost category, the academic literature has investigated which of the most known 
economic-based techniques are likely to perform best at identifying efficiencies. However, there is 
no clear consensus. Findings seem to depend on the true relationship between costs and cost 
drivers which is assumed in those academic studies (see box below for more details). 
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Comparison of performance of different economic-based techniques using Monte Carlo 
analysis 

A number of academic studies have undertaken Monte Carlo simulations to identify which 
techniques are better at identifying true inefficiencies. These studies take the following approach: 
■ The researcher generates a dataset of firms, with given inputs and outputs by specifying  a data 

generating process (DGP). This allows the researcher to know what the ‘true’ efficiency frontier 
is 

■ Different techniques are applied to this data and the resulting efficiency scores estimated 

■ The scores are compared with the ‘true’ efficiency scores using some performance metrics (e.g. 
Mean Squared Error) 

■ The steps above are repeated for various types of DGPs 
Based on the studies we have reviewed, performance depends on the assumptions underlying the 
DGP, so there does not seem to be a clear preferred option that performs best in all cases. The 
table below summarises the findings of these studies. 

Study DGP Performance 

Andor & 
Hesse 
(2014) 

Variation of production functions 
(Cobb-Douglas, Cresh,48 Translog), 
noise-to-signal ratios, distribution of 
inefficiency and inputs, sample size, 
heteroscedasticity, number of 
inputs, omitted variables, collinearity 

SFA performs on average best, but 
StoNED is found to also perform relatively 
well, especially in noisy settings. DEA 
performs less well 

Andor, 
Parmeter & 
Sommer 
(2019) 

Variation of production functions 
(parametric functions, Cobb-
Douglas and Translog, as well as 
non-parametric approaches 
combining the Translog with a DEA 
and using DEA only), noise-to-
signal ratios, distribution of 
inefficiency, sample size 

The method that performs the best, on 
average, is the combination approach 
involving taking the maximum of the DEA 
and SFA estimates. Regarding individual 
methods, SFA with a Translog production 
function outperforms the others, on 
average, followed by DEA with variable 
returns to scale, SFA with a Cobb-Douglas 
production function, and DEA with 
constant returns to scale. 

Andor & 
Parmeter 
(2017) 

Variation of production functions 
(Cobb-Douglas, Translog), noise-to-
signal ratios, sample size 

At times MOLS performs better than SFA. 
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Which technique can be used to identify where inefficiency is coming from? 

In general, all of the techniques can be used to identify the root cause of inefficiency.  

■ PPIs (including unit costs) can be derived and compared across operators. This can provide an 
indication of where inefficiencies might be coming from. However, exogenous differences 
between operators also need to be taken into account. This is the approach that the AER uses 
when comparing PPIs of key unit costs across operators (e.g. opex per customer for operators 
serving areas of similar population density). 

■ Economic-based models can be applied at lower levels of disaggregation. Considering lower 
levels of disaggregation should enable the use of more specific drivers of costs at that level. 
The UK regulator, Ofgem, uses economic-based models on disaggregated costs as part of its 
benchmarking toolkit.49 However, it is important to be mindful of the quality of the data available. 
It is unlikely that applying economic-based models to high level costs might indicate where 
inefficiency is coming from, as specific activities are not benchmarked separately at those 
higher level. A possible exception is DEA (and its variations). DEA allows to identify ‘peer 
companies’, i.e. operators that are located on the efficiency frontier and have similar outputs to 
the operator under consideration. If the sample is large enough (and therefore the peers are 
similar to the operator under consideration), it might be possible to further analyse these peers 
(i.e. unit costs for these peers for key scale drivers) against the benchmarked operator, to 
understand where inefficiencies might be coming from. 

■ Engineering models might be better placed to benchmark some specific activities, e.g. large 
capex projects, to attempt to understand whether these have been undertaken efficiently. The 
UK regulator, Ofgem, applies this approach when assessing costs for electricity TSOs and as 
part of the benchmarking toolkit for electricity DSOs. 

5.2 Transparency 

Which technique is more transparent? 

The level of transparency of a technique can be assessed along the amount of data required, 
assumptions and implementation of the technique, and whether data is likely to be publicly available 
or confidential. The most complex techniques are those that require a large amount of data 
(particularly data that is confidential and difficult to verify) and a large number of assumptions. 

 
48  For a  definition of a CRESH cost function, see for example Hanock. (1971). CRESH production functions. Econometrics, 29(5). 

https://www.jstor.org/stable/1909573  
49  For more details we refer to the case study ‘Great Britain – Electricity DSOs’ in Section 7.2. 

https://www.jstor.org/stable/1909573
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The most transparent technique is PPI. This is because the calculation is straightforward and no (or 
a limited number of) assumptions are required for it. In addition, PPIs can be based on high-level 
cost and cost drivers, which are usually available to interested stakeholders. 

The second most transparent group of techniques are economic-based models (and simple 
engineering models). While it can take some time to understand the nuances around their 
assumptions, these models are usually well known and understood. These techniques can be based 
on high-level cost and cost drivers. 

The least transparent techniques are likely to be complex engineering-based models and RNA. This 
is because the amount of data used and the assumptions required can be large and they require 
specific engineering and detailed network modelling knowledge. Moreover, data used for these 
techniques could be considered confidential by some stakeholders (e.g. some RNA models would 
require geographic location of assets). 

5.3 Applicability 

What is an appropriate sample size? 

Different techniques require different samples of comparator firms in order to be implemented. 

Engineering-based models and RNAs can be implemented without a sample of comparator firms. 
These models estimate efficient costs of activities by using engineering rationale or network 
optimisation. However, some comparator data might be used to determine assumptions on unit 
costs that enter the models. 

PPIs can also be calculated based only on data of the operator under consideration. In this case it 
is possible to compare the development of PPIs over time for this operator. However, in order to 
interpret the results of PPIs it is useful to compare the PPIs across comparator operators.  

Economic-based models require a sample of comparator firms. This is because the relationship 
between costs and cost drivers is estimated empirically exploiting the variation in this relationship in 
the sample. Usually most of the variation is cross-sectional, i.e. between operators. Therefore, while 
extending the sample over time is useful to account for some year effects, adding more comparators 
is usually more useful. 

Usually, the larger the sample size the better as more cost drivers can be taken into account. More 
complex parametric techniques (e.g. SFA, StoNED) require a larger sample as more parameters 
are estimated. However, the larger the sample the more difficult it is to ensure that data is 
comparable across operators and all exogenous differences have been accounted for. This is 
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particularly true of an analysis that has to rely on international data, because the regulator might 
have less knowledge or control on data coming from other jurisdictions. 

The choice of the sample is important when implementing economic-based models. Table 8 below 
summarises relevant regulatory precedents on sample size. Generally, the academic literature only 
provides very few rules of thumb for the minimum sample size required in an empirical application. 
Table 9 provides on overview of some approaches that could be used for different techniques. The 
applicability of a certain method with a given data size therefore has to be assessed for each specific 
context separately.  

Table 8 Selected regulatory precedents on sample size 
 

Jurisdiction Model Sample Comment 
Germany – gas DSOs DEA, SFA Around 190 

observations 
National cross-sectional 
sample from gas DSOs 

Ofgem, UK – gas DSO COLS Around 104 
observations 

National balanced panel of 
historical and forecast data 
from two regulation periods 

Ofgem, UK – electricity 
DSO 

COLS Around 78 
observations 

National balanced panel of 
historical and forecast data 
from two regulation periods 

AER, Australia OLS, SFA Two estimation 
periods, 2006-
2021 (1074 
observations) and 
2012—2021 (666 
observations) 

Use of international panel data 
from New Zealand and Ontario 
(Canada) to increase sample 
size 

EA, Finland – electricity 
DSOs 

StoNED 690 observations National unbalanced panel 
from 89 electricity DSOs over 
an 8-year period 

E-Control, Austria – gas 
DSOs 

DEA, MOLS 20 observations National cross-sectional 
sample from gas DSOs 

E-Control Austria – 
electricity DSOs 

DEA, MOLS 38 observations National cross-sectional 
sample from electricity DSOs 

 

Source: Frontier Economics 
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Table 9 Rule of thumbs on sample size for economic-based models 
 

Technique Rule of thumb 
DEA Banker et al. propose three times number of inputs plus outputs.50 

SFA, COLS, 
MOLS 

An appropriate sample size can be calculated using a target for the power 
of a statistical test to be applied and by making some assumptions around 
the data that could be used in the regression estimation (e.g. the distribution 
of costs and cost drivers). For example, if the statistical test of interest is the 
significance of the coefficients of the econometric model estimated, it is 
possible to calculate the minimum sample size required for such a test to 
have an 80% power and 5% level of significance, which will depend on 
distributional assumptions for the data.  

StoNED Given the nonparametric nature, a large sample is better. It is challenging to 
construct a definitive rule of thumb 

 

Source: Frontier Economics 

 

How to account for heterogeneity? 

Usually there are exogenous differences between operators that affect their costs, for example 
differences in terrain or population density. Operators do not usually have control over these 
exogenous differences. Statistically controlling for heterogeneity is important to avoid that these 
differences are considered inefficiencies. 

All the techniques under consideration allow to account for exogenous differences. There are three 
main approaches to do this, which can be combined: 

■ Ex-ante adjustment. This is done by adjusting the data before it is used in any model for 
exogenous differences. For example, Ofgem adjusts cost data of gas DNOs by differences in 
wages in different areas of the country. 

■ In-model adjustment. This is done by including relevant drivers of exogenous differences in 
the model. This approach is advantageous when the relationship between costs and cost 
drivers is not well known or the regulator wants to estimate it using the available data. However, 
the number of cost drivers that can be added is restricted due to limited sample sizes. 
Regulators adjust for some cost differences in this way, for example, the Finnish regulator 

 
50  Banker, R. D., Charnes, A., Cooper, W. W., Swarts, J., & Thomas, D. (1989). An introduction to data envelopment analysis with 

some of its models and their uses. Research in governmental and nonprofit accounting, 5(1), 125-163. 
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includes the ratio of metering points/connections points to account for differences between rural 
and urban electricity DSOs. 

■ Ex-post adjustment. This is done after the model has been estimated and the efficiencies have 
been derived. Adjustment of the efficiency scores or the implied allowances are made to 
account for factors unaccounted for in the model. For example, the AER adjusts the efficiency 
scores ex-post by a set of Operating Environment Factors (OEFs).51 Another example is the 
UK water regulator, Ofwat, which allows additional costs due to a number of operator specific 
circumstances through its cost adjustment claims process.  

In principle, adjusting for cost differences ex-ante or in-model is preferred to ex-post adjustments. 
This is because the efficiency scores will be biased if not all material exogenous factors have been 
accounted for during the estimation of the model. 

How to account for economies of scale? 

If there are economies of scale, the larger the scale of operation of an operator, the smaller its 
marginal costs. When undertaking the benchmarking analysis it is important to determine whether 
there are economies of scale and then decide whether to account for them or not. Accounting for 
economies of scale (or not) can provide different incentives to operators: 

■ If economies of scale exist and are considered when estimating the efficiency frontier, then 
regulated operators are only compared to operators of a similar scale. 

■ If economies of scale exist but are not considered, then the regulated operators are compared 
to all operators of any scale. Therefore, the efficiency assessment includes a scale component. 
This means that particularly smaller operators (operating at a sub-optimal scale) may be 
considered inefficient because of their smaller scale. This may incentivise these operators to 
merge in order to improve their efficiency. However, it is worth nothing that DSOs and TSOs 
may have limited control on the scale of their operations in the short term (e.g. they may not be 
legally or politically permitted to merge). 

Regulators could adopt different approaches to establish whether there are economies of scale. 
Some techniques can be used to estimate economies of scale. For example,  econometric models 
can allow estimating (dis)economies of scale (e.g. by considering whether the coefficient of the 
scale variable differs from 1). Analysis of unit costs at different scale of operation can also reveal 
whether there are economies of scale for specific activities (e.g. if unit cost of delivering a certain 
activity changes as the scale of delivering the activity increases). The regulator could also decide to 

 
51 AER. (2022). Annual Benchmarking Report: Electricity Distribution Network Service Providers. https://www.aer.gov.au/networks-

pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022 

https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022
https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022
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impose specific economies of scale assumptions, informed by regulatory objectives, academic 
literature or expert input, or otherwise, as a cross-check. 

All of the techniques in our short list allow to account for economies of scale, as indicated in Table 
10 below. 

Table 10 How to model economies of scale by technique 
 

Technique Approach 
PPI Economies of scale can be estimated empirically from the data by 

calculating the PPIs at different levels of scale 

DEA Economies of scale can be assumed (typically by choosing whether the 
data envelop should follow a constant return to scale assumption, variable 
return to scale assumption, or non-decreasing return to scale assumption). 
The variable return to scale assumption allows to model both increasing 
and decreasing return to scale.  

COLS, SFA Economies of scale can be estimated from the data. Alternatively, 
constraints can be imposed on the scale coefficients. 

StoNED Standard StoNED assumes variable returns to scale. It is possible to 
impose an additional restriction for other returns to scale assumptions.  

Engineering 
models, RNA 

Assumptions can be used when calculating costs from these models (e.g. 
by using decreasing unit costs) 

 

Source: Frontier Economics 

Which technique can be used with forecast data? 

All the techniques in our short list can be used with forecast data. There are different ways in which 
forecast data can be used: 

■ Inclusion of costs and cost drivers in estimation sample. All techniques can be estimated 
using a sample that includes only historical data, or only forecast data, or a combination of both. 
Inclusion of forecast data in the sample allows to directly estimate the expected future 
efficiencies. For example, the UK’s Ofgem estimates its models for gas DSOs using a sample 
that includes both historical and forecast data. If forecast data is included in the sample it is 
important to consider whether the operators have incentives to provide accurate forecasts. At 
RIIO1 Ofgem applied two approaches meant to get accurate forecasts: (1) well-justified-
business-plan. Ofgem defined criteria for a well-justified-business-plan and assessed 
operators’ business plans against those criteria. In case all criteria were met the operator was 



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    74 

 

 
 
 

eligible for fast-tracking. This meant that the allowed revenues were set based on the business 
plan without any further evaluation of the reported forecast costs. (2) Information-Quality-
Incentive (IQI). The IQI was used to set the strength of the upfront efficiency incentives each 
operators faces according to differences between its forecasts and Ofgem’s assessment of its 
efficient expenditure requirements. It was meant to encourage operators to submit accurate 
expenditure forecasts to Ofgem, because ‘truth-revealing’ resulted in the highest incentives.52 
In preparation of RIIO2 Ofgem commissioned an assessment of RIIO1 including well-justified- 
business -plans and Information-Quality-Incentive (IQI), which proposed different options for 
adjustments and/or improvements.53 As a consequence in RIIO2 for electricity distribution 
operators Ofgem made several key changes to its approach including removing the fast-track-
process, replacing the IQI with a new ’confidence-dependent incentive rate’ approach and 
introducing a new Business Plan Incentive. The latter involves a four stage process including 
penalties e.g. for breaching minimum requirements for business plans and poorly justified cost 
proposals, and rewards for ambitious cost proposals and additional customer value.54 

■ Use forecasts of cost drivers. Parametric techniques, engineering-based models, and PPIs 
can be used to determine the relationship between cost and cost drivers. This relationship can 
be determined using historical data. Then, forecasts of cost drivers can be fed to the estimated 
model to forecast future efficient costs.55 The static efficiency can be determined from the 
historical sample or from the forecast sample or a combination of both. The latter is the 
approach adopted by the water regulator in England and Wales, Ofwat, at the current price 
control of water and wastewater companies, PR19. For setting allowances for wholesale water 
and wastewater, Ofwat uses econometric models to estimate the historical efficiency and catch-
up. It then forecasts the costs using its models and forecasts of cost drivers, and applies the 
historical catch-up. For setting allowances for retail, Ofwat estimates econometric models over 
the historical sample and uses the model to predict the costs. The catch-up efficiency is derived 
as an arithmetic average of historical and forecast catch-up efficiencies.  

 

 
52  For an example of the IQI for electricity DSOs in RIIO1 we refer to Ofgem. (2014, November). RIIO-ED1: Final determinations for 

the slowtrack electricity distribution companies: Final decision (pp. 
37ff).https://www.ofgem.gov.uk/sites/default/files/docs/2014/11/riio-ed1_final_determination_overview_-
_updated_front_cover_0.pdf  

53  CEPA (2018, March), Review of the RIIO framework and RIIO-1 performance, Final Report for Ofgem. 

54  For details on the Business Plan Incentive we refer to Ofgem. (2022, November). RIIO ED2 Final Determinations Overview 
document (pp. 64ff). https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-
ED2%20Final%20Determinations%20Overview%20document.pdf  

55  For PPIs, this for example could mean deriving historical efficient unit costs, and then assuming these unit costs remain constant 
in the future. 

https://www.ofgem.gov.uk/sites/default/files/docs/2014/11/riio-ed1_final_determination_overview_-_updated_front_cover_0.pdf
https://www.ofgem.gov.uk/sites/default/files/docs/2014/11/riio-ed1_final_determination_overview_-_updated_front_cover_0.pdf
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Which technique is likely to be more resource intensive? 

We have assessed how much resources a technique is likely to involve. Resources are related to 
number of data points to be collected, as well as assumptions required and complexity in 
implementation. For this reason our assessment of resource intensity is in line with our assessment 
of transparency. 

■ PPIs are the least resource intensive as no (or limited) assumptions are required to implement 
these descriptive techniques. 

■ Simpler engineering models and economic-based models are likely to be more resource 
intensive than PPIs. This is because more data needs to be collected, and relationships 
between costs and cost drivers need to be established (using engineering expert input and/or 
empirically). Some time will be required to test and validate assumptions. We note that a 
considerable amount of effort might be required to ensure that data is comparable and of 
sufficient quality. 

■ More complex engineering models and RNA are likely to be more resource intensive. This is 
because the number of data points, variables considered, and assumptions is likely to be 
significantly larger than for the other techniques considered.  

5.4 Robustness 

How do you ensure robustness? 

We consider a model (and its results) to be robust if they do not change significantly when making 
small changes to the data or the assumptions used. Robustness is usually assessed empirically 
during the model development phase. A well specified model that relies on high quality data should 
allow one to identify a robust relationship between cost and cost drivers which does not depend on 
specific assumptions or small changes in the data used. 

Robustness of a model can be tested during the development phase, e.g. by removing some 
comparators or changing assumptions regarding cost functions. An important step to ensure 
robustness is to ensure that the data is comparable across operators and consistently defined over 
time. PPIs over time can be used as part of this process as they can be used to identify changes in 
key drivers over time. As part of the model development the regulator can investigate whether the 
changes are genuine changes in costs (and if so what drives them) or driven by accounting practices 
or reporting errors (and if so, how to adjust for them). 
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6 Assessment of potential benefits of combining different 
techniques 

Benchmarking is a valuable instrument of the regulatory toolbox. However, when applying this tool, 
it is unlikely that there exists a unique right benchmarking model. Hence, there may be merit in 
combining different benchmarking methods that complement each other in order to offset possible 
shortcomings of a single benchmarking technique. There are two main ways of using different 
techniques and then combining the results, either to benchmark  

■ A given cost category; or 
■ Different cost categories. 

In this section we present our assessment on combining benchmarking techniques and conclude 
by indicating which combinations of techniques could be appropriate in the Dutch context. 

6.1 Combining techniques to benchmark a given cost category 

For a given cost category (e.g. opex or totex), a range of different benchmarking techniques could 
be used to assess the efficiencies of the TSOs and DSOs against that cost category. Combining 
different techniques can help the regulator increase the robustness of its findings by addressing 
some of the uncertainties around three key factors: 

■ Choice of a specific technique; 
■ Assumptions underlying a specific technique; 

■ Other aspects of the benchmarking analysis (e.g. cost drivers, sample). 

We expand on these factors below and summarise the practical approaches adopted by regulators 
to combine techniques. 

Choice of a specific technique 

As discussed in Section 3, each benchmarking technique has strengths and weaknesses. Using 
different techniques (e.g. DEA and SFA) can help mitigate some of the weaknesses. If the 
assessment of efficiency is similar across different techniques this can increase the confidence that 
the regulator has in its findings (as these are not driven by the assumptions and weaknesses of a 
specific technique). For economic-based techniques, the same set of inputs and outputs can be 
used for different techniques. Therefore once data is collected, the additional resources required to 
use different techniques are relatively low. 
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This approach has been adopted by a number of regulators. For example, the AER assesses the 
efficiency of the Australian electricity DSOs using both SFA and COLS models. Bundesnetzagentur 
uses DEA and SFA for the German electricity and gas DSOs, and E-Control uses DEA and MOLS 
in Austria. 

Assumptions of a given technique 

The regulator can decide to combine techniques when there is uncertainty around assumptions 
underlying the technique, for example around the choice of functional form. This is the approach 
followed by the AER for electricity DSOs. Not only does the AER consider different techniques (SFA 
and COLS), but for each technique it estimates both a Cobb-Douglas and a Translog functional 
form. 

Other aspects of benchmarking analysis 

When undertaking a benchmarking analysis, there could be uncertainties around some of the other 
aspects beyond the choice of techniques and its assumptions, such as which cost drivers to use, 
which comparators to include, and which year to consider (or years in a panel data context). If there 
are no clear ways to resolve these uncertainties, it might be useful to test a range of models with 
different model specifications for cost drivers. 

For example, there could be two equally valid proxies for the same cost driver (i.e. good data quality, 
both supported by engineering and economic rationale, good fit to the data). In this case, the 
regulator might decide to consider combining results from two models that both use a different  
proxy. For example, this is the approach adopted by Ofwat when benchmarking the efficiency of 
retail costs of water and wastewater operators. For the current price control PR19, Ofwat developed 
a number of top-down and bottom-up retail models of costs and assigned equal weights to models 
that contain proxies of propensity to default. This is also the approach Ofgem used for the electricity 
DSOs, where benchmarking models with different cost drivers were estimated.56 

Regulatory precedent on combining techniques 

Regulators have combined results from different techniques in a number of ways: choosing the 
highest efficiency scores between different models; taking (weighted) averages; in-the-round 
assessment, i.e. forming a high-level view of efficiency without using results from models 
mechanistically; and using efficiency scores as cross-checks for the results of the preferred 
model(s). Table 11 summarises relevant regulatory precedents. 

 
56  For more details we refer to the case study ‘Great Britain – Electricity DSOs’ in Section 7.2. 
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Table 11 Regulatory precedents on combining techniques for a given cost category 
 

Approach  Regulatory precedent 
Maximum 
efficiency score 
across models 

BNetzA uses a best-of-four approach to determine the individual efficiency 
score for electricity and gas DSOs by taking the maximum of the DEA (non-
standardised/standardised capital costs) and SFA (non-
standardised/standardised capital costs) estimates. 

Arithmetic average 
of efficiencies from 
different models 

■ The AER benchmarks energy DSOs based on the arithmetic average 
of the efficiency score of four econometric models that differ with 
respect to functional form (Cobb-Douglas vs Translog) and estimation 
technique (SFA vs OLS with dummies for DSOs). Cost drivers are the 
same across models. 

■ The Finnish regulator used the arithmetic average of DEA and SFA for 
the regulatory period 2008-2011. 

■ Ofgem takes the arithmetic average of disaggregated (activity level) 
benchmarking results on one side and the average of the results of its 
three totex econometric models to determine the cost allowance of 
electricity DSOs in the RIIO-2 period on the other side. The average of 
the results of the three totex econometric models is derived by 
assigning equal weights to each of the three models (hence, each 
econometric model has an overall weight of 16.67%). 

Weighted average 
of efficiencies from 
different models 

■ E-Control weights results of DEA and MOLS. The regulator chose the 
weights to balance pros and cons: Gas DSO: 50% DEA and 50% 
MOLS; Electricity DSO: 50% MOLS, 25% DEA (with aggregated model 
network length for LV, MV, and HV) and 25% DEA (with separate model 
network length for LV, MV, and HV).  

■ Ofwat estimates efficiency scores as a weighted average of the scores 
from its econometric models. Ofwat estimates models using Random 
Effects. The models differ because both different levels of aggregation 
of costs are considered and, for a given level of aggregation, different 
cost drivers are used. Weights reflect the confidence that Ofwat places 
on the results stemming from its models (e.g. due to data quality 
issues). For example, when assessing retail costs Ofwat placed 25% 
weight on models based on disaggregated cost data and 75% weight 
on models based on total costs. 
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Approach  Regulatory precedent 
In-the-round 
assessment 

In Ireland, for the RC3 price control the Irish Water regulation, the CRU, 
assessed the efficiency of Uisce Éireann (formerly Irish Water) by 
considering an efficiency assessment across a range of econometric 
models (different weights used to estimate the Composite Scale Variable, 
different samples (inclusion/exclusion of Uisce Éireann from the sample)). 
The CRU did not mechanistically translate the efficiency scores from the 
model into an efficiency target. It used the results of the modelling to decide 
whether to apply an efficiency challenge or not. The CRU ultimate decided 
to apply an efficiency challenge based on its assessment of what has been 
achieved in other jurisdictions following the introduction of economic 
regulation.57 

Cross-checks The AER complements the regression models used to determine the cost 
allowance of electricity DSOs with detailed MTFP, MPFP and PPI analyses 
that allow for identification of potential sources of inefficiencies and to cross-
check results from the regression approaches. 

 

Source: Frontier Economics 

We note that for economic-based techniques, there is some evidence from the literature that to 
identify the true efficiency scores the maximum of the score across different DEA and SFA models 
tends to perform better than the average score across those same models.58 The implication is that 
individual methods tend to systematically underestimate the efficiency score on average. Tsionas 
(2021) ‘propose[d] and implement[ed] a formal criterion of weighting based on maximising proper 
criteria of model fit (viz. log predictive scoring) and show how it can be applied in Stochastic Frontier 
as well as in Data Envelopment Analysis models’.59 

The results from this literature depend on the underlying characteristics of the data used in the 
study, and therefore they may not be applicable to the Dutch context. Further, the results of those 
studies are based on empirical observations from the simulations, no formal theoretical analysis has 
been conducted to assess the merits of such approaches. However, a challenge with a theoretical 
analysis of combination approaches is that the theoretical rate of the bias (either for SFA or DEA) 
depends on the underlying data generating process which makes further scrutiny difficult.  

 
57  See CRU. (2019, December). Irish Water Revenue Control, Revenue Control 3 (2020-2024). 

https://www.wateradvisorybody.ie/wp-content/uploads/2020/04/Irish-Water-Revenue-Control-3-Decision-Paper.pdf  
58  See for instance Andor, M. A., Parmeter, C., & Sommer, S. (2019). Combining uncertainty with uncertainty to get certainty? 

Efficiency analysis for regulation purposes. European Journal of Operational Research, 274(1), 240-252. 
59  Tsionas, M. G. (2021). Optimal combinations of stochastic frontier and data envelopment analysis models. European Journal of 

Operational Research, 294(2), 790-800. 

https://www.wateradvisorybody.ie/wp-content/uploads/2020/04/Irish-Water-Revenue-Control-3-Decision-Paper.pdf
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A benefit of the combination of SFA and DEA approaches is that they are also transparent and easy 
to implement. We consider that combining different benchmarking techniques will likely involve 
some regulatory discretion. 

6.2 Combining techniques across different cost categories 

Different techniques can also be used to benchmark different cost categories (or levels of 
aggregation of the same cost category). This is useful in a number of situations: 

■ To make assessments more robust; 

■ To cross-check results; 
■ To identify sources of inefficiencies; 
■ To circumvent a lack of comparative data. 

To make assessments more robust 

Different techniques could be applied to different levels of aggregation of the same cost category. 
Results can then be combined to obtain an overall assessment of efficiency. For example, a high 
level assessment of totex can be combined with lower level assessments of the components of 
totex. The same or different techniques can be used.  

This is the approach used by Ofgem which uses a benchmarking toolbox of bottom-up and top-
down models on different costs categories and at various levels of aggregation.60 

For PR19 Ofwat adopted a similar approach when assessing water and wastewater wholesale 
costs. Ofwat estimated top-down models of total expenditures and bottom-up models of 
disaggregated expenditures (for water these costs included water resources costs and treatment 
water costs; for wastewater sewage collection costs and sewage treatment costs). It then 
determined the efficiency of the companies by first aggregating the results of the bottom up models 
and then calculating an average of the efficiencies estimated from top-down models and bottom-up 
models.  

To cross-check results 

Use of different techniques can also be employed to cross-check the results of the ‘preferred’ 
approach. For example, the AER’s ‘preferred’ suite of models to set the efficiencies of the electricity 
DSOs consists of top-down econometric models of total opex. The AER sets the efficiencies based 
on the average scores across four econometric models that differ by estimation technique (SFA or 

 
60  For more details we refer to the case studies ‘Great Britain – Gas DSOs’ in Section 7.1 and ‘Great Britain – Electricity DSOs’ in 

Section 7.2. 
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Fixed Effects61) and cost function specification (Cobb-Douglas or Translog). The AER cross-checks 
the validity of its results by using two different sets of techniques applied to different cost categories: 

■ PPIs. The AER estimates unit costs on both a total cost and an opex basis, using the two main 
cost drivers (circuit length and customer numbers) for the denominator of those ratios. It then 
compares the unit costs across operators taking density of the networks into account and makes 
some inference on whether the relative performance of each operator is in line with the findings 
from its econometric models (acknowledging that PPIs are simpler than other techniques used 
and rankings may be affected by factors not controlled for in the PPI analysis). 

■ Opex MPFP. The AER uses this technique to estimate opex productivity across operators and 
over time. It then compares the relative rankings of the operators at a given point in time, and 
how these have changed over time (i.e. which company has improved its productivity). The 
AER also checks whether the relative rankings from the Opex MPFP are consistent with the 
findings from its econometric models  

To identify sources of inefficiencies 

Benchmarking techniques can also be used to potentially identify where inefficiency comes from. 
Techniques used to identify where inefficiency comes from do not necessarily need to coincide with 
the techniques used to set the overall efficiency challenge, as these two objectives can differ 
Therefore, two sets of techniques can be combined to achieve these two different objectives. 

For example, the overall efficiency challenge could be determined by assessing the performance of 
operators at a high level of cost aggregation using more complex techniques (e.g. SFA). Instead, 
the sources of inefficiencies could be determined by assessing the performance of operators at a 
lower level of cost aggregation, which can help identify which operators are relatively efficient at 
undertaking certain activities. In this regard, PPIs could be used to provide some high level 
indications of which operators might have lower unit costs than others. 

To circumvent a lack of comparative data  

For some cost categories, such as routine costs driven by business as usual type of activities, the 
regulator might have access to comparative data. However, for other cost categories (e.g. bespoke 
operator-specific capex investments or costs driven by new activities) comparative data might not 
be available.  

In these situations, different techniques are likely to be needed to benchmark the two categories of 
costs as some techniques require comparative data while others do not. For example, economic-

 
61  Some regulators use Fixed Effects and Random Effects panel data models to benchmark costs. These models are used to 

estimate the effects of company-specific characteristics which do not change over time. These effects are often interpreted as 
inefficiency, although they could also capture some persistent heterogeneity. 
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based techniques usually require comparative data, while engineering-based techniques do not (or 
to a lesser extent). 

A number of regulators apply different techniques to different cost categories for the reasons 
outlined above. For example, for PR19 Ofwat used different techniques to benchmark water and 
wastewater operators’ expenditures.  

■ For routine year-on-year expenditures, which operators incur in the normal running of their 
businesses, Ofwat uses a suite of econometric models (based on Random Effects) estimated 
using historical data from the English and Welsh operators.  

■ For more ad hoc expenditures aimed at increasing the level of services or at providing new 
customers with the current service level (enhancement expenditures), Ofwat uses a range of 
techniques that vary by the particular enhancement expenditure under consideration. These 
techniques include unit costs, simple econometric models largely based on forecast data, and 
engineering ‘deep dive’ assessments. 

Implications for benchmarking the Dutch electricity and gas TSOs and DSOs 

Based on the assessment above and in the previous section, we considered whether each of the 
technique in our short list  could be used in the Dutch context to benchmark electricity and gas TSOs 
and DSOs, and what the potential challenges could be. Our findings are the following: 

■ PPIs could be used to provide descriptive statistics for all operators. They could also be used 
to develop a better understanding of where inefficiency is coming from (e.g. by comparing unit 
costs of specific activities or cost categories). 

■ COLS, MOLS, SFA, and DEA can also be used for all operators. The key challenge would be 
to identify an appropriate sample of comparators. For DSOs, it may be possible to estimate 
simple econometric models (like COLS) on the Dutch sample alone. This would need to be 
tested empirically. For the TSOs, given that there is only one gas TSO and one electricity TSO, 
it would be necessary to enlarge the sample with international data. The Pan-European study 
of TSOs and the AER’s international benchmarking of DSOs are two useful case studies that 
indicate which factors should be taken into account when conducting international 
benchmarking. 

■ Engineering based models can be used for all operators. Those models might be particularly 
useful to benchmark new large investments that are due to the energy transition, so potentially 
more useful for the electricity sector than the gas sector. 

■ RNAs could be used for TSOs. However, we do not think they can be used to benchmark total 
costs of DSOs because of the large number of different distribution assets that would need to 
be modelled. 
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7 Case studies 
In this section we present six case studies which are useful for understanding how different 
benchmarking techniques are used in regulatory applications. Table 12 lists the six case studies 
and summarises the reasons for selecting them. Some of the lessons learnt from DSOs are also 
applicable to TSOs, for example around combining different techniques, use of an internal sample, 
and use of PPIs. 

Table 12 List of case studies 

Country Sector Regulator Reason for selecting case study 
Great 
Britain 

Gas DSOs Ofgem Use of different techniques to benchmark different cost 
categories (economic and engineering-based techniques) 
Use of forward looking data 
Estimation of econometric models with a small sample 

Great 
Britain 

Electricity 
DSOs 

Ofgem Use of totex regression models and disaggregated 
benchmarking to benchmark a given cost category (totex) 

Use of forward looking data 
Estimation of econometric models with a small sample 

Finland Electricity 
DSOs 

Energy 
Authority 

Development of benchmarking (from DEA, to DEA and 
SFA, to StoNED) 
Application of StoNED in a regulatory context  

Australia Electricity 
DSOs 

AER Combination of different benchmarking techniques (SFA, 
OLS with fixed effects), and PPIs as cross-checks 
Use of international sample to address challenges with 
small samples 

Germany Electricity 
TSOs 

BNetzA Application of RNA 

Germany Electricity/ 
Gas DSOs 

BNetzA Different benchmarking techniques applied (DEA, SFA) 
Outlier analysis and cost driver analysis 

 
 
 

Source: Frontier Economics 
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7.1 Great Britain – Gas DSOs 

7.1.1 Introduction 

Gas DSOs in Great Britain are regulated by Ofgem through the RIIO regime (Revenue = Incentives 
+ Innovation + Outputs). The starting point for determining operators’ allowed revenues are the 
forecasts of costs that the DSOs submit to Ofgem as part of their detailed business plans. Forecast 
costs are assessed by Ofgem using a toolbox of comparative analyses. Some costs are assessed 
using OLS regressions that rely on historical and forecast data of all DSOs; other costs (for which 
the available data does not allow a comparative assessment) are assessed through DSO-specific 
approaches, which include technical assessments and expert reviews. The total baseline cost 
allowance obtained from the assessment of the submitted cost forecasts (‘benchmarking efficiency 
assessment’) is also subject to additional ongoing efficiency adjustments. 

7.1.2 Benchmarking technique – Complementary use of OLS, non-regression 
techniques and technical assessments 

The RIIO-GD262 framework developed by Ofgem sets out how the efficiency analysis of gas DSOs 
is conducted in the UK.63 The method used to assess the individual cost items is chosen based on 
the data that is available for comparative analysis. Approximately 85% of forecast totex is assessed 
by an OLS (top-down) regression model that is conducted using normalised and adjusted 
controllable totex.64 About 10% of forecast totex is assessed using non-regression based analyses, 
which include individual reviews as well as comparative methods such as unit cost models. The 
remaining 5% of forecast totex is related to operator specific activities or new projects (e.g. bespoke 
outputs). These are assessed using technical assessments or expert reviews of the submitted costs. 

Ofgem’s OLS model is estimated by regressing adjusted controllable totex on two types of variables 
assuming a Cobb-Douglas functional form: 

■ A single composite scale variable (CSV). Ofgem used a CSV given the small sample size. 
The CSV is a weighted average of different cost drivers. The weights are based on industry 
spend proportions for the disaggregated cost activities to which the drivers apply. The residual 
weight is assigned to the scale driver Modern Equivalent Asset Value (MEAV). Ofgem 

 
62  RIIO-GD2 = RIIO Gas Distribution 2nd regulatory period 

63  For a full documentation of Ofgem’s approach and methods for the cost benchmarking of gas DSOs in the RIIO-2 period see 
Ofgem’s final determination decision: Ofgem (2020). RIIO-2 Final Determinations for Transmission and Gas Distribution network 
companies and the Electricity System Operator. https://www.ofgem.gov.uk/publications/riio-2-final-determinations-transmission-
and-gas-distribution-network-companies-and-electricity-system-operator. 

64  Controllable totex are defined as the sum of controllable opex, capex and repex (replacement expenditures). Totex adjustments 
cover regional labour market conditions, urbanity and sparsity, among others. 

https://www.ofgem.gov.uk/publications/riio-2-final-determinations-transmission-and-gas-distribution-network-companies-and-electricity-system-operator
https://www.ofgem.gov.uk/publications/riio-2-final-determinations-transmission-and-gas-distribution-network-companies-and-electricity-system-operator
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undertakes a robustness analysis where it adds a squared term of CSV (which is found to be 
statistically insignificant) to the cost function. 

■ Two separate linear time trends for historical and forecast data. The trends control for time 
effects and allow for a structural break between the two time periods.  

The estimation uses clustered robust standard errors at the DSO level. Ofgem considered a random 
effects and a SFA model for robustness analyses, which yielded similar results as the OLS 
regression. Ofgem decided to use the results from the OLS model to set the allowances as it is less 
data intensive, requires fewer assumptions, and is more conservative and more transparent than 
the other approaches. 

7.1.3 Calculation of efficient cost levels 

Ofgem uses the OLS model to estimate predicted costs and compare them with the DSOs’ 
submitted costs.  

As discussed in Section 3.3.1, the conditional average function estimated by the OLS regression 
does not represent a cost frontier, as it includes the average level of inefficiency in the sample. 
Ofgem therefore follows a COLS approach to define a more ambitious efficiency benchmark than 
the OLS regression line. For this purpose it calculates individual efficiency scores as the ratio of 
submitted costs and the OLS predictions. It then uses a pre-defined quantile of the resulting 
efficiency score distribution (typically the 85th quantile) to define the efficiency frontier used for 
benchmarking. This is then applied to the modelled costs of all DSOs in the sample.  

7.1.4 Data sample 

The total cost allowance defined for gas DSOs in the RIIO-2 regulation period is based on data from 
all 8 gas DSOs. The benchmarking makes use of a combination of historical data (2014-2020) and 
forecast data (2021-2026) to maximize sample size and explicitly account for potential changes in 
the types of costs that DSOs experience. 

7.1.5 Conclusions 

This case study shows how to combine different techniques to assess different cost categories; how 
to use forward looking data, and also how to address some potential challenges with a small sample 
size.  

Although the majority of totex is assessed using a top-down econometric model, other approaches 
are used to assess the remaining costs. Forward looking data is included in the econometric model 
(we discuss Ofgem’s incentives around forecast data in Section 5.3). 
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The relatively small number of gas DSOs in the UK limits the benchmarking methods that Ofgem 
can apply in its assessment of DSOs’ submitted costs. Therefore, Ofgem relied on a COLS 
technique, which is less data intensive than other more complex models. Ofgem also chose to 
include a composite scale variable because of the limited sample size (although Ofgem made some 
assumptions to derive this variable). 

Some aspects of Ofgem’s RIIO-GD2 were appealed by a number of companies on a number of 
grounds, including on setting an 85th percentile efficiency target.65 The Competition and Markets 
Authority (CMA) found that Ofgem was not wrong in setting the 85th percentile efficiency target. We 
note however that the grounds of appeal are narrow and the CMA needs to apply specific legal 
standards.66 Because of this, operators may decide not to appeal aspects of benchmarking if they 
believe they will be dismissed under those specific legal standards. Therefore, we consider that the 
fact that other aspects of Ofgem’s benchmarking has not been appealed does not necessarily mean 
that the operators agree with those aspects. 

7.2 Great Britain – Electricity DSOs 

7.2.1 Introduction 

Electricity DSOs in Great Britain are also regulated by the RIIO regime. As for gas DSOs, the starting 
point for determining operators’ allowed revenues are the forecasts of costs that the DSOs submit 
to Ofgem as part of their detailed business plans. Forecast costs are assessed based on a 
combination of totex regressions and disaggregated (activity level) benchmarking. Operators have 
to meet a catch-up efficiency challenge defined by a glide path moving the benchmark efficiency 
score from the 75th to the 85th quantile over the first three years of the regulatory period. In addition, 
operators are subject to an ongoing efficiency challenge of 1% per year. 

 
65  For a summary of the CMA’s decision see CMA (2019, September). Northern Powergrid (Northeast) Plc and Northern Powergrid 

(Yorkshire) Plc v Gas and Electricity Markets Authority: Final determination.. 
https://assets.publishing.service.gov.uk/media/61791296d3bf7f55ff1fc099/Energy_appeals_-
_Summary_of_final_determination_28.10.21.pdf 

66  Ibid. para 9 
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7.2.2 Benchmarking technique – Combining results from totex regressions and 
disaggregated modelling 

The RIIO-ED267 framework sets out how the efficiency analysis of electricity DSOs is conducted in 
the UK.68 Ofgem combines two different approaches to assess the costs submitted by the electricity 
DSOs: totex regressions and disaggregated (activity level) benchmarking. 

The totex regressions used for cost benchmarking consist of three different models. These models 
primarily differ in the choice of explanatory variables used. Similar to the regression specification in 
Ofgem’s gas distribution framework discussed in Section 7.1, CSVs are used to aggregate 
information from various cost drivers while keeping the number of estimated parameters in the 
regression low. 

■ Model 1 uses a bottom-up CSV aggregating a long list of cost drivers, which were identified 
through an activity-level analysis.69  

■ Model 2 uses a top-down CSV that only covers key cost drivers.70 In addition, the model 
includes capacity released as another demand driver. 

■ Model 3 uses the same top-down CSV as Model 2, but additionally includes the number of heat 
pumps and electric vehicles to model the (expected) uptake of low carbon technologies (LCT). 

All three models are estimated assuming a Cobb-Douglas functional form; pooled OLS is used for 
the estimation. While Model 1 and 2 are applied to historical and forecast data, Model 3 is restricted 
to forecast data, as the uptake of electric vehicles and heat pumps has been too low historically to 
allow estimation of the associated parameters. Model 1 and 2 include a dummy variable for the 
RIIO-ED2 regulation period,71 to account for structural changes resulting from the change to the 
RIIO-ED2 period and the increased importance of the transition to net zero emissions. 

The disaggregated benchmarking consists of a range of techniques depending on applicability to 
the various cost categories. The techniques employed include regressions, unit cost analysis, and 
qualitative assessments based on engineering knowledge.  

 
67  RIIO-ED2 = RIIO Electricity Distribution 2nd regulatory period 

68  For a full documentation of Ofgem’s approach and methods for the cost benchmarking of electricity DSOs in the RIIO-2 period 
see Ofgem’s final determination decision: Ofgem (2022). RIIO-ED2 Final Determinations. 
https://www.ofgem.gov.uk/publications/riio-ed2-final-determinations. 

69  The bottom-up CSV includes MEAV, customer numbers, faults driver, peak demand, capacity released, length OHL, total 
network length, and spans affected ONI drivers. 

70  The top-down CSV includes MEAV, network length, customer numbers, total faults, and peak demand . 

71  Recital 7.138, page 249 in the RIIO-ED2 Final Determinations Core Methodology. 
https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf 

https://www.ofgem.gov.uk/publications/riio-ed2-final-determinations
https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf
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Ofgem considers the totex regressions and the disaggregated benchmarking approaches as 
“complementary since they seek to capture different characteristics of the DNOs’ Business Plans 
and explore the efficiency and justification of the plans using different tools and techniques”.72  

7.2.3 Calculation of efficient cost level 

Ofgem calculates the efficient cost level as follows: 

■ First, for each of the totex regression models and for the disaggregated benchmarking Ofgem 
calculates an operator’s specific efficiency score as the ratio of submitted costs and modelled 
costs. For the totex regression models, modelled costs are estimated from the predictions of 
the models; for the disaggregated benchmarking, modelling costs are estimated from the 
predictions of the disaggregated benchmarking models.  

■ Second, Ofgem calculates the model-specific benchmark efficiency scores as a given quantile 
of the efficiency score distribution over all operators. The quantile applied in the calculation is 
increased along a linear glide path from the 75% to the 85% quantile over the first three years 
of the regulatory period. 

■ Third, Ofgem calculates the weighted average of the model-specific efficiency scores from all 
totex regressions (with weight equal to 16.67% for each of the three totex models) and the 
disaggregated benchmarking (with 50% weight) to obtain an overall efficiency score. 

■ Fourth, the modelled cost obtained using the four benchmarking models are multiplied with the 
overall efficiency score. This results in four model-specific cost allowances. 

■ Finally, Ofgem sets the cost allowance by taking again the weighted average of the cost 
allowances of the four models (with weight of 16.67% for each regression model and 50% for 
the disaggregated benchmarking). 

7.2.4 Data sample 

The total cost allowance defined for electricity DSOs in the RIIO-2 regulation period is based on 
data from all 6 electricity DSOs. The benchmarking makes use of a combination of historical data 
(2016-2021) and forecast data (2022-2028) in regression Models 1 and 2, but is restricted to forecast 
data in Model 3. 

 
72  Recital 7.580, page 345 in the RIIO-ED2 Final Determinations Core Methodology.  

https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf  

https://www.ofgem.gov.uk/sites/default/files/2022-11/RIIO-ED2%20Final%20Determinations%20Core%20Methodology.pdf
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7.2.5 Conclusions 

This case study shows how to use techniques at different level of cost aggregation to benchmarking 
totex, how to use forward looking data, and also how to address some potential challenges with a 
small sample size.  

Totex is benchmarked by combining a top-down assessment of totex with a bottom-up assessment 
of disaggregated costs. As for RIIO-GD2, forward looking data is included in the econometric models 
(we discuss Ofgem’s incentives around forecast data in Section 5.3). 

The relatively small number of electricity DSOs in the UK limits the benchmarking methods that 
Ofgem can apply in its assessment of DSO’s costs for the RIIO-2 regulatory period. In contrast to 
the RIIO-GD2 regulation, Ofgem uses both a totex top-down approach and a  disaggregated bottom-
up approach to obtain a final cost allowance.  

The two case studies on DSO regulation in the UK provide good examples of ways to combine 
different techniques for cost benchmarking. 

Some aspects of Ofgem’s RIIO-ED2 were recently appealed by an electricity DSO, including on 
allocation of allowances between cost categories. The CMA found that Ofgem made an error in 
allocating allowances between cost categories.73 As mentioned in the previous case study, we 
consider that the fact that other aspects of Ofgem’s benchmarking has not been appealed 
(potentially due to the specific legal standards and narrow grounds of appeal) does not necessarily 
mean that the operators agree with those aspects. 

7.3 Finland – Electricity DSOs 

7.3.1 Introduction 

The Energy Authority (EMV), the Finnish regulator, has been in charge of setting revenue 
allowances and monitoring and evaluating network operators since 1995. The amendment of the 
Electricity Market Act in 2004 caused significant changes in the supervision system. The EMV has 
applied benchmarking to all electricity distribution operators on a regular basis since 2005. The 
benchmarking techniques and their regulatory application changed over time:  

 
73  CMA (September 2019), Northern Powergrid (Northeast) Plc and Northern Powergrid (Yorkshire) Plc v Gas and Electricity 

Markets Authority, Final determination. 
https://assets.publishing.service.gov.uk/media/650b0b1527d43b000d91c321/21_September_2023_Final_determination_-_RIIO-
2_ED2_Appeal_-_version_for_publication_A.pdf 

https://assets.publishing.service.gov.uk/media/650b0b1527d43b000d91c321/21_September_2023_Final_determination_-_RIIO-2_ED2_Appeal_-_version_for_publication_A.pdf
https://assets.publishing.service.gov.uk/media/650b0b1527d43b000d91c321/21_September_2023_Final_determination_-_RIIO-2_ED2_Appeal_-_version_for_publication_A.pdf
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■ In the 1st regulatory period (2005-2007) the general productivity factor for operating costs was 
based on a DEA Malmquist Index using total costs.  

■ For the 2nd regulatory period (2008-2011) EMV also applied an operator specific productivity 
factor when setting the cost targets for operating costs. The parametric SFA was used in parallel 
with DEA and the operating cost targets were calculated based on the average of DEA and 
SFA efficiency scores estimated based on total costs. 

■ In the 3rd regulatory period (2012-2015) EMV introduced key methodological changes. 
Operating costs only (and not total costs) were used in the efficiency analysis and StoNED was 
used as benchmarking technique. EMV made some changes on the initially recommended 
model specification based on feedback from the electricity distribution operators. Despite these 
changes distribution operators sued EMV, demanding changes to the regulatory model as such 
(e.g. level of efficiency improvements). However, none of the operators contested the general 
principles of the StoNED model.74  

■ In the 4th (2016-2019) and 5th (2020-2023) regulatory period the StoNED method was further 
developed by including a proxy for capital costs as a fixed input. 

EMV is currently preparing the 6th/7th regulatory period and is considering further developments of 
efficiency benchmarking using StoNED. We understand that the gradual evolution of benchmarking 
in the Finnish regulatory regime resulted in a high level of acceptance by stakeholders. 

7.3.2 Benchmarking technique – StoNED for operating costs and unit costs for capital 
costs 

In the current regulatory period EMV has used StoNED to calculate the efficient opex of electricity 
DSOs. 

The efficiency of capital expenditures (i.e. investment costs) is implicitly assessed by using 
replacement values instead of historical costs when determining operators’ regulated asset base 
and corresponding capital costs (depreciation and financing costs). Replacement values are 
calculated using unit costs per asset class published by EMV. Hence, if operators’ outturn 
investment costs are lower than implied by these unit costs, operators profit from the difference (and 
vice versa). However, there is no assessment of whether the number of operators’ ‘physical assets’ 
is efficient. 

Separating the assessment for operating and capital costs ignores the potential trade-off between 
opex/capex and provides adverse incentives regarding the opex/capex mix. In contrast to the 
StoNED model from the 3rd regulatory period, which only included one input (operating costs), the 

 
74  Timo Kuosmanen; Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the 

StoNED method in the Finnish regulatory model; Energy Economics 34 (2012) 2189–2199. 
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StoNED model for the 4th/5th regulatory period includes two types of inputs: 1) operating costs as a 
controllable input; and 2) replacement value of the network as a fixed input, i.e. where no efficiency 
target applies. 

Including the fixed replacement value should (partly) address the opex/capex trade-off. The results 
indicate that operating costs can be offset to some extent by capital investments. However, for most 
operators the impact is low and close to zero. The average of the impact is 0.0076 and the median 
only 0.0002. This means that on average or at the median 1€ replacement values reduces operators’ 
operating costs by 0.0076 € or 0.0002€.75 

7.3.3 Calculation of efficient cost levels 

EMV applies ex-post regulation, i.e. a ‘reasonable return’ is calculated ex-post, and it compares 
operators’ outturn profits with an allowed ‘reasonable profit’. When calculating the ‘reasonable profit’ 
EMV uses operators’ ‘efficient’ operating costs and capital costs (depreciation and WACC*RAB) 
based on replacement values. 

The reference value for the ‘efficient’ operating costs is calculated using the StoNED estimation 
model. This benchmark is the regulator’s best approximation for what the efficient level of 
controllable costs is for each DSO, given its outputs.  

The efficiency frontier derived from StoNED can be presented as shadow price profiles for operators’ 
outputs and fixed inputs corrected for environmental factors and the expected (industry wide) 
inefficiency. In the StoNED method shadow prices are set in such a way that the performance of 
operators is seen in the most favourable light. The shadow price profiles of the efficiency frontier 
derived from the StoNED method differ with respect to the level of the shadow price they allow for 
different output variables. Some shadow price profiles put more weight, for example, on the output 
‘number of customers’, some on the output ‘network length’. Hence, the ‘efficient’ operating costs 
for a specific operator are calculated by multiplying this operator’s outputs with the shadow profile 
which maximises the value of its operating costs. These operating costs are then corrected for an 
environmental factor (ratio of the number of connections to metering points) and expected industry’s 
inefficiency. Hence, in the absence of a competitive market, the shadow prices can be interpreted 
as a yardstick market in which operators compete in terms of cost-efficiency with other network 
operators. 

These ‘efficient’ operating costs are adjusted annually to reflect that if DSOs’ outputs increase over 
time, so should efficient operating costs. The StoNED model is not re-estimated every year: the 

 
75  Sigma-Hat Economics, Tehostamiskannustin sähkön jakeluverkkoyhtiöiden valvontamallissa: Ehdotus Energiaviraston 

soveltamien menetelmien kehittämiseksi neljännellä valvontajaksolla 2016 – 2019 (The efficiency incentive in the electricity 
distribution system operator control model: Proposal for the development of the methodology applied by the Energy Agency in 
the fourth control period 2016 – 2019), p. 22, Final report, 2014. 
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parameter estimates (shadow price profiles, impact from environmental factors, expected 
inefficiency) established in the StoNED estimation at the start of the regulatory period are retained, 
and efficient operating costs are only updated annually to reflect output changes and to account for 
inflation. 

Although EMV applies an ex-post regulation, the StoNED parameter estimates76 allow operators to 
easily calculate ex-ante the ‘efficient’ operating costs at different levels of input and output variables, 
and hence anticipate how the benchmark changes as a result of changes in the outputs, the capital 
stock, or the operating environment.  

7.3.4 Data sample and cost drivers 

The StoNED estimation for the 4th/5th regulatory period was based on an unbalanced panel model 
with 89 operators over an 8-year period, with a total of 690 observations. The study from ECKTA 
Oy (2022)77 in preparation of the 6th/7th regulatory period uses an unbalanced panel model with 86 
operators over the years 2008-2020. 

Despite the large sample EMV does not apply econometric cost driver analysis to determine the 
outputs and environmental factors for the benchmarking analysis. The StoNED model for the current 
4th/5th regulatory period uses two input variables (operating costs and replacement value of the 
network as fixed input), four output variables and one environmental variable.  

The four output variables in the StoNED estimation are: 

■ The number of customers (i.e. metering points); 
■ The total length of the network; 

■ The volume of transmitted energy; and 
■ Regulatory outage costs.  

Broadly, the objective is for these output variables to capture differences in the scale of the DSOs 
used in the model – a larger DSO will have higher operating costs and therefore any relative 
comparison across them needs to account for this. The environmental variable is the ratio of the 
number of connections to metering points. 

 
76  EMV provides a publicly available spreadsheet application for this exercise. 

77  Timo Kuosmanen, Natalia Kuosmanen, Sheng Dai; Kohtuullinen muuttuva kustannus sähkön jakeluverkkoyhtiöiden 
valvontamallissa: Ehdotus tehostamiskannustimen kehittämiseksi 6. ja 7. valvontajaksoilla vuosina 2024-2031 (Reasonable 
variable cost in the electricity distribution system operator control model: Proposal for the development of the efficiency incentive 
6. and 7. for the monitoring periods 2024-2031); Report for EMV, 2022. 

 



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    93 

 

 
 
 

7.3.5 StoNED going forward 

EMV is currently preparing the 6th/7th regulatory period and commissioned ECKTA Oy (2022) on 
possible development of the StoNED model specification. ECKTA Oy (2022) proposed inter alia to 
limit the range of shadow prices for outputs and to use current use value (depreciated replacement 
value) instead of replacement values as fixed input.  

7.3.6 Conclusions 

The Finnish case study shows how to gradually develop the application of different benchmarking 
techniques, how to extend the inputs to take into account possible trade-offs between opex and 
capex, and how to use the results from the benchmarking analysis to determine allowed opex during 
the regulatory period taking into account operators’ changing supply task during the regulatory 
period. 

The Finnish case study provides a good example of a gradual evolutionary development of 
benchmarking analysis. EMV started only with DEA. Taking into account the possible disadvantages 
of DEA (e.g. deterministic approach), EMV decided to apply an additional benchmarking technique, 
SFA, to DEA. EMV also recognised that both approaches have advantages and disadvantages and 
took this into account by taking the average of DEA and SFA efficiency scores when setting 
allowances for operators. EMV then developed an approach combining properties of DEA and SFA 
into the StoNED approach. We understand that the gradual development resulted in a good 
acceptance by regulated operators on the benchmarking techniques, as such, although there were 
discussions about the appropriate model specification with regards to the used output parameters. 

The Finnish regulatory approach treats operating and capital costs in a different way. EMV 
recognised that this may results in distorted incentives with regards to an optimal opex/capex 
choice. Hence, in addition to operating costs EMV extended the inputs by a measure for capital 
intensity. In the current regulatory period EMW uses the replacement value of operators’ network 
assets to control for the capital intensity, i.e. higher capital intensity reduces operating costs. In 
preparation of the forthcoming regulatory period EMV is considering to adjust the measure for capital 
intensity by using “depreciated” instead of “undepreciated” replacement values. This should better 
reflect the trade-off between opex and capex, because the impact from an older network on 
operating costs could be higher than a newer one. 

Finally, the Finnish case study provides an example of how to deal with the impact from operators’ 
variations in the supply task on efficient operating costs during the regulatory period. The ‘efficient’ 
operating costs for a regulatory period vary with operators’ outputs (supply task). As the ‘reasonable 
profit’ is calculated ex-post, the outturn outputs (rather than the forecast output) of the relevant 
regulatory period are used for calculating the ‘efficient’ operating costs. This has the advantage that 
the impact of output variations on costs can be taken into account without the drawback of having 
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to assess operators’ forecasts. The disadvantage is that the relationship between outputs and costs 
are based on historical data and a historical production technology. If the production technology 
changes in the future because of new challenges from the energy transition than this is not 
appropriately reflected in the historical output-cost relationship. The estimation of future ‘efficient’ 
costs may then be distorted. 

7.4 Australia – Electricity DSOs 

7.4.1 Introduction 

The AER is responsible for regulating electricity DSOs in Australia, which includes the determination 
of the revenues that DSOs are allowed to recover from their customers.  

For this purpose, the AER assesses costs submitted by network operators using a variety of different 
cost benchmarking methods. Opex is assed used regression approaches (OLS and SFA); capex is 
assessed a combination of top-down and bottom-up models. In addition, on an annual basis, the 
AER checks the evolution of the operators’ relative efficiency using MTFP, opex and capex MPFP, 
and PPIs. To increase the sample size available for the econometric analysis, the AER combines 
data of 10 Australian DSOs with data from 19 operators in New Zealand and 38 operators in Ontario 
(Canada). 

7.4.2 Benchmarking techniques 

In 2022, the AER assessed the costs of the electricity DSOs using a combination of three 
approaches:78 

■ OLS and SFA regressions for the determination of opex allowances; 
■ A combination of top-down and bottom-up assessments for the determination of total capex 

allowances; and 

■ A combination of alternative approaches, including MTFP, opex and capex MPFP and PPIs, for 
a more detailed study of the evolution and sources of operators’ efficiency levels. These 
approaches are not directly used to set the cost allowances. 

 
78  See the following documents for a detailed description of the AER’s approach and methods. Cunningham, M., Hirschberg, J., & 

Quack, M. (2022). Economic Benchmarking Results for the Australian Energy Regulator’s 2022 DNSP Annual Benchmarking 
Report https://www.aer.gov.au/system/files/Quantonomics%20-%20Benchmarking%20results%20for%20the%20AER%20-
%20Distribution%20-%20November%202022.pdf; AER (2022) Annual Benchmarking Report. Electricity distribution network. 
https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022 

https://www.aer.gov.au/system/files/Quantonomics%20-%20Benchmarking%20results%20for%20the%20AER%20-%20Distribution%20-%20November%202022.pdf
https://www.aer.gov.au/system/files/Quantonomics%20-%20Benchmarking%20results%20for%20the%20AER%20-%20Distribution%20-%20November%202022.pdf
https://www.aer.gov.au/networks-pipelines/guidelines-schemes-models-reviews/annual-benchmarking-reports-2022
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The opex benchmarking is based on four regression models. The models differ with respect to the 
technique used (OLS with fixed effects for the Australian DSOs79 and SFA) and the functional form 
assumed (Cobb-Douglas and Translog). The estimation is conducted on two different time periods 
using historical data: a long period from 2006 to 2021, and a short period from 2012 to 2021. DSOs 
from New Zealand and Ontario (Canada) are included to increase the sample size. The cost drivers 
considered include a range of outputs, some environmental variables,80 and a linear time trend to 
account for systematic changes over time. All regressions include country fixed effects.  

The benchmarking of operators’ capex is based on a combination of top-down and bottom-up 
assessments of the total forecast capex submitted by the DSOs. Typically, the top-down review is 
conducted first and determines whether further detailed analysis is required. It also acts as a 
benchmark to evaluate the results of the bottom-up analysis. The assessments include the analysis 
of capex drivers, programmes, and projects. However, the AER does not determine individual capex 
drivers or whether certain programmes or projects should be undertaken. It thus ultimately leaves 
the investment decision to the network operators, consistently with its incentive-based regulatory 
framework. 

The AER uses a combination of MTFP, MPFP and PPI calculations to analyse the evolution of 
various dimensions of operators’ efficiency over time and across operators. The results from these 
models do not directly enter the calculation of the final efficiency scores used to determine cost 
allowances. Yet, they provide additional information that is used to gain a deeper understanding of 
the benchmarking outcomes and to perform consistency checks of the results from the econometric 
analysis. 

7.4.3 Calculation of efficient cost level 

The AER determines efficient costs for each DSOs by following these steps: 

■ First, for each company the AER determines an overall efficiency score as the arithmetic 
average of the scores from four economic models. Scores estimated can range between 0% 
and 100%. 

■ Second, the AER rebase the efficiency scores derived at the first step by an efficiency target, 
such that all companies that have a score above the target are considered 100% efficient. The 
efficiency target is initially set to 75%. The target is then adjusted by an operator-specific factor 

 
79  The two OLS regressions also include fixed effects for each Australian DSO. These are the basis for the efficiency score 

calculation based on the OLS results. 
80  Output variables included in the opex regression are customer numbers, circuit length and ratcheted maximum demand. 

Environmental factors accounted for in the econometric analysis include customer density, maximum demand density and the 
degree of network undergrounding. 



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    96 

 

 
 
 

that correspond to the AER’s estimate of the impact of the operating environment on the 
company’s operations which are not captured in the models. 

■ Finally, the AER sets efficient costs by multiplying the average predicted costs from the four 
econometric models by the score derived at the third step. 

These steps are repeated over two periods of time, a long period starting in 2006 and a shorter 
period starting in 2012. The efficient costs from the two periods are averaged. The AER only 
determines efficient costs for those companies that are considered inefficient when comparing 
scores from the first step with the 75% target, otherwise it uses actual costs as the basis of its 
forecast allowance. 

The four regression models used at the first and final step differ according to the technique used 
(OLS and SFA) and functional form assumed for the specification of the cost function (Cobb-
Douglas and Translog). The efficiency scores are determined as follows: 

■ For the OLS models the efficiency score of operator 𝑖 is determined based on the difference 
between the estimated fixed effect of operator 𝑖 and the smallest estimate of the fixed effects 
of all operators in the sample. The efficiency score represents the long-run level of efficiency of 
operator 𝑖 estimated from the data. It is 1 if operator 𝑖 determines the frontier and is smaller 
than 1 otherwise.  

■ For the SFA models the efficiency is estimated by making distributional assumptions on the 
error terms. Even for SFA, the AER assumes a time-invariant inefficiency, therefore the 
efficiency score represents the long-run level of inefficiency.  

7.4.4 Data sample 

As mentioned above, the econometric analyses of the opex of Australian electricity DSOs is 
conducted on a short and long sample that both include international data from New Zealand and 
Ontario. In early stages of the development of the Australian benchmarking regime one of the AER’s 
consultants had found that there was insufficient variation over time in the Australia sample to allow 
for reliable estimations using the econometric models.81 The consultant suggested to add data from 
electricity DSOs in Ontario and New Zealand to the sample.  

Some advantages of the inclusion of the DSO data from these two jurisdictions are that the data is 
publicly available, its quality has been checked, and has been used by national authorities, (the 

 
81  Economic Insights. (2015). Response to Consultants’ Reports on Economic Benchmarking of Electricity DNSPs. 

https://www.aer.gov.au/system/files/Economic%20Insights%20-
%20Response%20to%20consultants%20%20reports%20on%20AER%20economic%20benchmarking%20-
%20April%202015_1.PDF  

https://www.aer.gov.au/system/files/Economic%20Insights%20-%20Response%20to%20consultants%20%20reports%20on%20AER%20economic%20benchmarking%20-%20April%202015_1.PDF
https://www.aer.gov.au/system/files/Economic%20Insights%20-%20Response%20to%20consultants%20%20reports%20on%20AER%20economic%20benchmarking%20-%20April%202015_1.PDF
https://www.aer.gov.au/system/files/Economic%20Insights%20-%20Response%20to%20consultants%20%20reports%20on%20AER%20economic%20benchmarking%20-%20April%202015_1.PDF


BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    97 

 

 
 
 

Ontario Energy Board undertakes a benchmarking study of Ontario energy DSOs using the same 
data).  

The AER’s econometric analysis attempts to capture any potential systematic differences between 
the DSO operating and regulatory environment in the different jurisdictions included in the sample 
by including in each model a country fixed effect for New Zealand and a country fixed effect for 
Ontario. In addition, DSOs that are considered small compared to a typical Australian DSO are 
dropped from the international sample to reduce the influence that they would have on the estimation 
results. 

7.4.5 Conclusions 

The Australian case study provides an example of how different techniques can be combined to 
assess opex and how international data can be used to mitigate problems of small sample sizes. 
The AER addressed potential problems arising from a lack of comparability across an international 
sample by dropping the type of small operators that are not present Australian and including country 
fixed effects into the regression (we note that there could be other differences that have not been 
accounted for, such as differences in variable definitions or the regulatory environment).  

While it is generally unclear whether this is sufficient to control for the effects of systematic 
differences between the countries, the AER’s approach to complement its econometric analysis with 
extensive MTFP, MPFP and PPI analyses is a potential way to increase the credibility of the 
regression results as they are based on the Australian data only and can be used to explore sources 
of changes in the benchmarking results.  

Finally, this case study provides an example of combining benchmarking techniques on a given cost 
category as well as across different cost categories. 

The AER applied an earlier version of the methodology summarised in this section to set revenue 
allowances of the New South Wales DSOs and the Australian Capital Territory DSO in 2015. These 
networks appealed the AER’s decisions in a number of areas, including opex benchmarking. The 
Australian Competition Tribunal found that the AER had erred in its application of opex 
benchmarking (and other aspects). The Tribunal ordered the AER remake its opex decision.  The 
AER lodged applications with the Federal Court seeking review of the Tribunal’s judgement, but the 
Court upheld the Tribunal’s decision that the AER’s approach to forecast opex was in error. 

The Tribunal found several errors made by the AER on opex benchmarking. For example, the 
Tribunal found that the AER had placed too much weight on the results of a single econometric 
model (SFA Cob-Douglas) and relied too much on the data used for the benchmarking analysis 
(some of which was estimated or backcasted. It also found that the AER’s use of country fixed 
effects would not correct properly for country-specific differences and analysis underpinning 



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    98 

 

 
 
 

operating environment factors was inadequate. For more details about the outcome of the Tribunal’s 
decision refer to Frontier Economics Australia’s report ‘Outcome of merits review of AER reset 
decisions for NSW and ACT networks’.82 

Since the Tribunal’s decision the AER has changed some aspects of its benchmarking approach, 
for example by considering four econometric models. The AER also worked with he industry to 
improve the data used in benchmarking. 

7.5 Germany – Electricity TSOs 

7.5.1 Introduction 

Electricity TSOs in Germany are regulated using a revenue cap. The revenue cap is based on 
historical total costs, which are indexed during the regulatory period by CPI, a generic productivity 
factor, and an operator-specific efficiency dependent factor. The operator-specific factor is based 
on an efficiency analysis. 

There are four electricity TSOs in Germany (Amprion, TenneT DE, 50Hertz, TransnetBW). In the 1st 
regulatory period (2009-2013) and 2nd regulatory period (2014-2018), the operator-specific factors 
were based on an international benchmarking analysis. The analysis used DEA on a sample of 
European TSOs. In the 3rd regulatory period (2019-2023) a relative RNA was applied to assess the 
efficiency of the four TSOs. Bundesnetzagentur had some concerns with regards to the 
transparency of the international benchmarking analysis which could not be resolved with the 
necessary certainty.83 

Bundesnetzagentur is currently preparing the 4th regulatory period (2024-2028) for the electricity 
TSOs where the relative RNA will be applied again. 

 
82 See Frontier Economics’ report. https://www.frontier-economics.com.au/documents/2016/04/outcome-merits-review-aer-reset-

decisions-nsw-act-networks.pdf  
83 See Bundesnetzagentur’s report. 

https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK08/BK8_05_EOG/59_BesonderhUENB/592_Effizienzvgl/BK8_Effiz
ienzvgl_basepage.html?nn=909818  

https://www.frontier-economics.com.au/documents/2016/04/outcome-merits-review-aer-reset-decisions-nsw-act-networks.pdf
https://www.frontier-economics.com.au/documents/2016/04/outcome-merits-review-aer-reset-decisions-nsw-act-networks.pdf
https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK08/BK8_05_EOG/59_BesonderhUENB/592_Effizienzvgl/BK8_Effizienzvgl_basepage.html?nn=909818
https://www.bundesnetzagentur.de/DE/Beschlusskammern/BK08/BK8_05_EOG/59_BesonderhUENB/592_Effizienzvgl/BK8_Effizienzvgl_basepage.html?nn=909818
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7.5.2 Benchmarking technique – Greenfield and brownfield approach 

Bundesnetzagentur commissioned BET/IFHT (2018)84 for a study of the RNA for German electricity 
TSOs. After considering different variants of RNA,85 BET/IFHT (2018) proposed two approaches: 

■ Greenfield approach. In a pure greenfield approach a reference network required to fulfil a 
defined supply task is built from scratch with no legacy structure. In practice, BET/IFHT (2018) 
applied a conditional greenfield approach using the existing networks nodes, existing 
transmission line routes and existing transmission line corridors as starting point, i.e. the 
number of network nodes and any routing of lines was exogenously given. 

To avoid discussions about the allocation of national congestion costs to the four electricity 
TSOs, the greenfield reference network for each TSOs was not compared to the real networks 
of the TSOs. Instead, it was compared to a ‘real network plus’ which included additional network 
components large enough to avoid any congestion. The necessary number of additional 
components was calculated using the same method as applied when calculating the reference 
network. Figure 13 illustrates this. 
The efficiency score is calculated as the ratio of total costs of the greenfield reference network 
to total costs of the real network plus. Both networks’ costs are measured by summing up 
number of components weighted by standard unit costs. (See section below for more details) 

■ Brownfield approach. The starting point of the brownfield approach is the existing real network 
of the TSOs. The real network is then analysed to identify which and how many network 
components can be removed from the real network without impairing technical and operational 
safety. The efficiency score is derived from the ratio of the costs of the theoretically reduced 
network to the costs of the real network. To calculate this ratio, the network components are 
weighted by standard unit costs. 

 
84  BET/IFHT. (2018). Gutachten zur Referenznetzanalyse für die Betreiber von Übertragungsnetzen im Auftrag der 

Bundesnetzagentur. Retrieved from 
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/St
rom/GutachtenReferenznetzanalyse.pdf?__blob=publicationFile&v=1  

85  Discarded variants of the RNA were the comparison of real with greenfield reference networks having the ‘same level’ of 
congestion or comparison of real and greenfield reference networks with different level of congestion but including a price for 
congestion. 

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Strom/GutachtenReferenznetzanalyse.pdf?__blob=publicationFile&v=1
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Strom/GutachtenReferenznetzanalyse.pdf?__blob=publicationFile&v=1
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Figure 13 Comparison of Germany’s electricity tranmsission network and a reference 
network using a ‘greenfield’ approach 

 
Source: Gutachten Referenznetzanalyse’ by BET and RWTH Aachen, 2018 
 

7.5.3 Calculation of efficient cost level 

Bundesnetzagentur used RNA to assess the 

■ ‘structural efficiency’ of the network: the optimal amount of ‘physical assets’ to fulfil a defined 
supply task; 

■ But not ‘cost efficiency’: the comparison of ‘efficient’ costs for reference network with actual 
costs of the TSOs). 

This means that the ‘physical network components’ of the reference network and the real networks 
were weighted by the same standard unit costs. The total costs for the reference and real networks 
are calculated by the sum of depreciation86 and operating expenditures.87 

 
86  Depreciation = (Quantity of physical assets*Standard unit costs)/depreciation period 

87  Opex = (Quantity of physical assets*Standard unit costs)*0.8% 
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The method for calculation of TSO’s efficiency scores differed between the Greenfield and the 
Brownfield approach: 

■ Greenfield approach. TSOs’ efficiency was calculated by a relative comparison of efficiency 
scores among the four TSOs applying two steps. First, the TSOs’ total costs (based on standard 
unit costs) of the real network plus are compared to its reference network. The TSO with the 
highest ratio ‘Real network/Reference network’ was defined as 100% efficient. Second, the 
other TSOs’ ratios are scaled to the 100% efficient TSO. BET/IFHT (2018) derived efficiency 
scores between 83.7% and 100%.88 

■ Brownfield approach. The efficiency scores are calculated by ratio of the total costs (based 
on standard unit costs) of the reference network with ‘removed network components’ and the 
real network. In BET/IFHT (2018) only one network component was identified as being 
redundant, resulting in efficiency scores of 100% for three TSOs (Amprion, 50Hertz, 
TransnetBW) and 99.92% for one TSO (TenneT DE). 

BET/IFHT (2018: 58) included a disclaimer with regards to methodological assumptions made within 
the Greenfield approach having an impact on efficiency scores. The first assumption refers to the 
calculation of the congestion free “real network plus” which was compared to the reference network. 
This may have introduced uncertainties into the analysis. The second assumption referred to the 
restriction of technology choice to only use 380-kV asset when calculation the optimal reference 
network (even if 220-kV assets would be the better choice). And the third assumption referred to 
dealing with network structures where there was an overlap of network ownership in a supply region 
for two TSOs. BET/IFHT noted these assumptions could not be fully clarified from a regulatory and 
legal perspective. Given this uncertainty Bundesnetzagentur decided to use the efficiency scores 
from the Brownfield approach when setting the allowed revenues for the 3rd regulatory period. 
Hence, the impact from the operator-specific efficiency dependent factor on the total costs of the 
electricity TSOs was negligible. 

7.5.4 Data sample and data requirements 

The RNA was undertaken with 4 TSOs. This allowed to make a ‘relative’ comparison between the 
TSOs, in contrast to only comparing 1 TSO with its reference network (‘absolute comparison’). 

The data requirements for the RNA were complex and consisted of: 

■ Network data, i.e. limits for line-monitoring, phase-shifter conditions;  
■ Physical assets (and their location); 

 
88  The individual scores for the four German TSOs based on the Greenfield approach were not disclosed. 
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■ Market data, i.e. time series for generator production, RES production, and load profiles. 

■ Allocation of generation/RES and load to network nodes; 
■ Generators’ maintenance schedules, must-run requirements for congestion management; 
■ Standardised network components used for reference network; 

■ Standardised unit costs for network components; 
■ Routes for lines. 

Due to the complexity of the data requirement and the RNA calculations the project lead time for 
the analysis was around 1.5 years (July 2017 to November 2018). 

7.5.5 Conclusions 

The German case study for electricity TSOs illustrates how to deal with a small sample size by using 
an engineering based RNA. At the same time the German case study shows the challenges of RNA 
in the context of benchmarking and how to deal with these challenges. 

Bundesnetzagentur decided to replace the DEA based European benchmarking analysis by a 
national RNA due to data transparency reasons. RNA is an interesting benchmarking technique to 
deal with a small sample size, because it compares real TSOs’ with optimal networks. In principle, 
RNA is possible only with one TSO. However, as there are 4 TSOs in Germany a relative RNA, 
which allowed a more “light touched” efficiency assessment, was applied. 

Bundesnetzagentur decided to restrict the efficiency assessment on the optimal size of the physical 
assets necessary to fulfil TSOs’ supply task. So Bundesnetzagentur answered only the question, if 
the size of the physical assets is efficient, but not if the physical assets are operated, maintained or 
constructed at efficient costs. This can be interpreted as a “light-touched” efficiency assessment, as 
well. 

Bundesnetzagentur decided to apply two RNA approaches: Greenfield and brownfield approach. 
The reason for the latter was some uncertainty on the results from the greenfield analysis and the 
resulting inefficiencies for a specific TSOs. The result from the brownfield approach was that all 4 
TSOs were efficient. Bundesnetzagentur decided to use the efficiency scores from the brownfield 
approach, which meant no impacts from RNA efficiency results on allowed costs. 

The German example highlights some caveats when using RNA. The decision on the reference 
network approach (Greenfield vs. Brownfield), i.e. accounting for the historical legacy of the network 
structure and effects of the ‘optimal size’ of the reference network. The data requirements are 
complex and a considerable amount of time to implement the methodology is required. The result 
from an RNA depends on the applied algorithm and underlying assumptions. This may imply low 
transparency and high uncertainty on what really drivers the results. Hence, Bundesnetzagentur 
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decided to be cautious in using its efficiency scores because of the high degree of uncertainty 
surrounding RNA results with all TSOs treated as fully efficient. 

7.6 Germany – Electricity and Gas DSOs 

7.6.1 Introduction 

Electricity and gas DSOs in Germany are regulated using a revenue cap. The revenue cap is based 
on historical total costs, which are indexed during the regulatory period by CPI, a generic productivity 
factor, and an operator-specific efficiency dependent factor. The operator-specific factor is based 
on an efficiency analysis. The large sample of German electricity and gas DSOs allows the 
application of two benchmarking techniques (DEA and SFA) and, in addition, econometric cost 
driver analysis and outlier analysis, when undertaking the benchmarking analysis for the electricity 
and gas operators.  

Electricity and gas DSOs challenged various decisions from Bundesnetzagentur including also the 
benchmarking analysis for electricity and gas DSOs. However, we are not aware that the 
combination of efficiency scores using the “Best-of-Four” approach was challenged.89  

7.6.2 Benchmarking techniques – DEA and SFA 

The German Incentive-regulation ordinance (‘Anreizreguierungsverordnung – ARegV’) sets the 
same frame for the efficiency analysis of electricity and gas DSOs. It prescribes the application of 
two specific benchmarking techniques – DEA and SFA –  and outlier analysis in DEA and SFA. 

■ DEA. For DEA, ARegV prescribes the application of constant-returns-to-scale, i.e. operators 
are responsible for the optimal size, and specific outlier analysis. Outliers in DEA are identified 
in a sequential approach using the dominance and super-efficiency criteria. The former criterion 
excludes operators from the sample which have a dominant impact on the efficiency scores of 
other operators; the latter excludes operators with a DEA efficiency score above a certain 
threshold. 

■ SFA. For SFA, ARegV only prescribes that outlier analysis shall be applied and provides certain 
instruments which may be used for that. The efficiency analysis for electricity and gas DSOs 
applied Cooks’ distance for the outlier analysis. SFA as a parametric approach requires 
choosing a functional form for the cost function and an assumption on the distribution of the 
inefficiency term. The SFA for electricity and gas DSOs uses exponential distribution of the 

 
89  We note that in a decision from September, 26th, 2023 the Federal Court of Justice annulled the Bundesnetzagentur decision on 

gas DSO benchmarking analysis for the 3rd regulatory period. When writing this report no reasoning from the Federal Court of 
Justice was available. 
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inefficiency term. The SFA for electricity DSOs90 uses a norm-linear functional form while for 
the gas DSOs a Translog functional form is applied. 91 92  

In addition, ARegV prescribes that total costs (opex, depreciation, financing costs) shall be 
assessed by using two variants of capital costs: 

■ Non-standardised capital costs mainly based on operators’ financial accounts (i.e. different 
depreciation periods possible); and 

■ Standardised capital costs based on annuities with standardised depreciation periods and 
financing costs. 

7.6.3 Calculation of efficient cost levels 

Operators’ efficiency scores are evaluated against the efficiency frontier (i.e. 100% efficient 
operator). The operators have to reduce the inefficient part of total costs within one regulatory period 
(5 years). Hence, efficiency scores are mechanistically translated into regulatory total cost targets 
and there is no distinction between operating and capital costs. In addition, the efficiency analysis 
does not specify which (disaggregated) costs are inefficient. However, the German regulatory 
approach includes different safety nets for the operators: 

■ Outlier analysis. Operators identified as outliers are excluded from the efficiency analysis. This 
tends to increase the efficiency scores of the other operators; 

■ Minimum efficiency score. Operators with an efficiency score below 60% are set at 60% when 
calculating the operator-specific efficiency dependent factor. 

■ Best-of-four approach. ARegV prescribes the application of two benchmarking techniques – 
DEA and SFA – using two variants for capital costs (non-standardised/standardised). This 
results in four efficiency scores from four efficiency model specifications.93 ARegV prescribes 

 
90  For further details we refer to: Swiss Economics/Sumicsid/IAEW. (2019), 

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/St
rom/Effizienzvergleich_VNB/3RegPer/Gutachten_EVS3_geschw.pdf?__blob=publicationFile&v=3.  

91  For further details on the benchmarking analysis for the 3rd regulatory period we refer to: Frontier Economics/TU Berlin. (2019). 
Effizienzvergleich Verteilernetzbetreiber Gas (3. Regulierungsperiode); Report for Bundesnetzagentur. 
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/G
as/Gutachten_Effizienzvergleich_final.pdf?__blob=publicationFile&v=2  

92  For further details on the benchmarking analysis proposed fort he 4th regulatory period we refer to: Frontier Economics/TU 
Berlin. (2023). Effizienzvergleich Verteilernetzbetreiber Gas (4. Regulierungsperiode); Report for Bundesnetzagentur. 
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/G
as/Gutachten_Entwurf2_4RP.pdf?__blob=publicationFile&v=2  

93  DEA with non-standardised capital costs; DEA with standardised capital costs; SFA with non-standardised capital costs; SFA 
with standardised capital costs. 

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Strom/Effizienzvergleich_VNB/3RegPer/Gutachten_EVS3_geschw.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Strom/Effizienzvergleich_VNB/3RegPer/Gutachten_EVS3_geschw.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Gas/Gutachten_Effizienzvergleich_final.pdf?__blob=publicationFile&v=2
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Gas/Gutachten_Effizienzvergleich_final.pdf?__blob=publicationFile&v=2
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that the efficiency score used to set operators’ cost targets is determined by the maximum of 
the four efficiency scores. 

7.6.4 Data sample and cost driver analysis 

The efficiency analysis for electricity and gas DSOs can draw on a data sample of around 200 
operators each. The large data sample allows the application of econometric cost driver analysis, 
when specifying the model for the efficiency analysis. The data used in the cost driver analysis are 
also published by Bundesnetzagentur, which allows operators to replicate the results from the 
efficiency analysis. 

7.6.5 Conclusions 

The German case study for electricity and gas DSOs illustrates how to combine different 
benchmarking techniques and cost definitions. It shows the advantage of having a large data sample 
for operators regarding the choice of benchmarking techniques, econometric cost-driver analysis 
and outlier analysis. The German case study also shows how legal requirements shape the model 
specification of a benchmarking analysis. 

The German regulatory regime recognises the different properties of benchmarking techniques. 
Hence, a combination of benchmarking techniques characterised by different properties (DEA and 
SFA) is applied. In addition, the German regulatory regime takes into account the possible impact 
of different depreciation policies and investment cycles on efficiency scores by using two definitions 
for capital costs: non-standardised and standardised. The latter are based on annuities using 
uniform depreciation periods and financing costs for all operators. When combining the different 
benchmarking techniques and cost definitions the German regulatory regime prescribes using the 
maximum of the efficiency scores in order to set cost targets for gas DSOs (“Best-of-Four”). This 
can be interpreted as a cautious approach. 

The large number of electricity gas DSOs allows the application of SFA. In addition, the selection of 
appropriate outputs covering operators’ supply task can be based on econometric cost-driver 
analysis. The analysis also allows to take into account outliers in the cost-driver analysis. The large 
data sample would also allow other benchmarking technique like StoNED. However, the current 
legal frame precludes this option. 

One feature of the German regulatory framework is that the ARegV includes detailed legal 
requirements on the regulatory model, e.g. which benchmarking techniques to use. This limits the 
regulatory discretion of Bundesnetzagentur. However, the European Court of Justice decision from 
2nd September 2021 (C-718/18)94 claimed that this is in conflict with European law and more 

 
94 See the European Court of Justice’s decision. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:62018CJ0718  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:62018CJ0718
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competences must be assigned to Bundesnetzagentur. The detailed implementation of the EuGH 
decision in German law and how Bundesnetzagentur will use the new assigned competences is still 
in an early phase. 
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8 Summary of key findings 

In this report, we identified a short list of benchmarking techniques that could be used to determine 
the efficient costs of gas and electricity TSOs and DSOs in future regulatory periods. We found the 
following: 

■ There is a large set of benchmarking techniques that can be used to address the challenges of 
the energy transition and implications from the CBb’s ruling. These techniques are part of the 
academic literature and have been used by regulators in other jurisdictions. These techniques 
include both descriptive techniques (PPIs), economic-based techniques (COLS, MOLS, DEA, 
SFA, StoNED), and engineering-based models (including RNA). 

■ A combination of techniques can be used to i) improve the robustness of the assessment of 
efficiency of a given cost category and ii) benchmark different cost categories. On point i), it is 
possible to combine results from different techniques applied at the same level of cost 
aggregation to mitigate some of the weaknesses of specific techniques (e.g. benchmarking 
totex using both SFA and DEA). It is also possible to combine results from techniques applied 
at different level of cost aggregation (e.g. results from a top-down benchmarking of totex are 
combined with results from a bottom-up benchmarking of components of totex). On point ii), 
different techniques can be applied to different cost categories, for example. SFA might be 
better suited for benchmarking business as usual activities, while engineering models might be 
better for bespoke large capex investments. 

■ Some of the techniques we identified can be used to understand where inefficiency is coming 
from. For example, even if the overall efficiency of costs is assessed using a top-down 
econometric model, it would be possible to apply specific models to disaggregated costs to 
understand where inefficiency comes from. It is also possible to use some descriptive statistics 
like PPIs to understand how unit costs might different between companies and use this 
information to attempt to understand the source of inefficiencies. 

■ Other aspects of the broader benchmarking framework are as important as the choice of 
technique to address the challenges set out above. For example, when undertaking a 
benchmarking analysis it is important to also consider the set of comparators, how the cost 
drivers are defined, whether the data is consistent across operators and over time, how the 
results of benchmarking are used (e.g. mechanistically or not) and which incentives are in place 
(e.g. whether the operators are incentives to provide accurate forecasts; what the implications 
of benchmarking opex and capex separately are). 
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Annex A – Technical details on the Caves, Christensen and 
Diewert (1982) multilateral Törnqvist TFP 

Consider the index proposed by Caves, Christensen and Diewert (1982) (henceforth CCD): Let 𝑥� 
and 𝑦� indicate the vector of inputs and outputs for firm 𝑖, respectively. To aggregate all inputs and 
outputs into a scalar variable that can be used to obtain a univariate measure of efficiency the CCD 
multilateral Törnqvist TFP defines the output and input weights based on their revenue and cost 
shares. That is, the 𝑘-th element in the vector 𝑤� 

�  containing the weights associated to the outputs 
of firm 𝑖 is defined as 

𝑤�
�,� =

𝑟�
�

∑ 𝑟�
�𝑦�

��
�

 , 

where 𝑟�
� refers to the revenue associated to the 𝑘-th element in the output vector 𝑦�. Likewise, the 

𝑘-th element in the input weight vector 𝑤� 
�  is defined as 
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where 𝑐�
� refers to the cost associated to the 𝑘-th element in the input vector 𝒙�. A crucial feature of 

the MTFP approach is that every observation is set in relation to a sample average, before it is 
compared to any other observation in the sample. Let 𝑤��

�, 𝑤��
�, ln (𝑥�)��������� and ln (𝑦�)��������� refer to the sample 

averages of the individual quantities. The CCD’s MTFP then compares the output of firm 𝑖 to the 
sample average based on the following formula: 
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Analogously, inputs are compared to the sample average based on  
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The CCD MTFP between two firms 𝑖 and 𝑗 is defined as 

𝑀𝑇𝐹𝑃�,�
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Annex B – Detailed discussion of semi-parametric techniques 
This annex provides further details on some of the semi-parametric techniques discussed in the 
main report. Section B.1. covers constrained stochastic approaches such as FLW, Parmeter and 
Racine and StoNED. The section also includes a detailed discussion of the importance of 
homoskedasticity of the inefficiency distribution when applying these methods that is beyond the 
scope of the main text. Section B.2 deals with improvements of standard DEA/FDH methods, 
covering stochastic DEA/FDH as well as bias corrected/bootstrap DEA. 

Different to the discussion provided in the main text the description of the different methods, and 
particularly their formal representations, are stated in terms of production functions instead of cost 
functions. It thus follows the academic literature more closely. However, all methods discussed in 
this annex can easily be translated into a cost function context. 

B.1 Constrained stochastic approaches 

We begin the discussion with the general cross-sectional stochastic 
frontier model:  

𝑦𝑖 = 𝑚 (𝒙𝒊, 𝒛𝒊)  +  𝑣𝑖  −  𝑢𝑖  =  𝑚 (𝒙𝒊, 𝒛𝒊)  +  𝜀𝑖 , 

where 𝑚(·) is the production front ier of technology that can be used to transform a traditional 
vector of inputs, 𝑥 ∈ 𝑅𝑞𝑥  , and a vector of environmental or contextual variables 𝒛 ∈ 𝑅𝑞𝑧  into 
scalar output 𝑦𝑖, distorted by some noise 𝑣𝑖  ∼ 𝐷(0, 𝜎𝑣 (𝒙𝒊, 𝒛𝒊))  that is beyond the production 
process (as well as serving to capture measurement  error and other potential model 
misspecification) and by technical inefficiency 𝑢𝑖 ∼ 𝐷 + (𝛾(𝒙𝒊, 𝒛𝒊), 𝜎𝑢 (𝒙𝒊, 𝒛𝒊)). Traditional 
estimation of the model begins by assuming a specific parametric functional form for the 
production technology 𝑚 (𝒙, 𝒛), as well as making distributional assumptions on both 𝑣𝑖  and 𝑢𝑖 
as well as parametric specification of the distributional parameters, 𝜎𝑣 (𝒙, 𝒛), 𝛾(𝒙, 𝒛), and 
𝜎𝑢(𝒙, 𝒛). The unknown parameters are then estimated via the maximum likelihood (ML) 
estimator. For example, Aigner, Lovell & Schmidt (1977) assume that 𝑚 (𝒙, 𝒛) = 𝑚 (𝒙 ) =  𝒙 𝛽, 
that 𝜎 (𝒙, 𝒛) = 𝜎𝑣 , 𝛾(𝒙, 𝒛) = 0, and 𝜎𝑢(𝒙, 𝒛)  = 𝜎𝑢, coupled with the assumption that 𝑣𝑖  ∼
𝑁 (0, 𝜎𝑣 ) and 𝑢𝑖 ∼ 𝑁 + (0, 𝜎𝑢). The models discussed in this paper have focused on relaxing 
many of the parametric assumptions deployed in Aigner et al. (1977) and a majority of the 
applied frontier analysis literature when SFA is used. 

The semiparametric approaches that ACM is interested in all deal with estimation of the 
production frontier, 𝑚 (𝒙𝑖, 𝒛𝑖), without placing parametric restrictions on the frontier itself. The 
approach is semiparametric since, after estimation of the production frontier, efficiency is 
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calculated via distributional assumptions on the composed error. In the setup of Fan, Li & 
Weersink (1996) (FLW), they did not consider contextual variables, and the model becomes 

𝑦𝑖 =  𝑚 (𝒙𝒊)  −  𝑢𝑖  +  𝑣𝑖 . 

FLW’s approach was to first ignore the composite nature of the error term and simply estimate the 
production frontier as though it were a conditional mean. However, this first step goes beyond 
straight application of kernel regression given that the estimated conditional mean is a biased 
estimator when ignoring the inefficiency term; the key condition required for consistent  estimation 
of the production frontier in a regression setting is 𝐸 [𝜀|𝑥 ] = 0. However, given the one-sided 
nature of u, this condition is not satisfied, rather 𝐸 [𝜀|𝑥 ] = 𝛾 . Thus, the location of the production 
frontier cannot be identified in the regression setup as it is the case that 

𝑦𝑖 =  𝑚 (𝒙𝒊)  +  𝜀𝑖  =  𝑚 (𝒙𝒊)  +  𝛾 +  (𝜀 𝑖  −  𝛾) ≡ 𝑔(𝒙 𝒊 )  +  𝜀�  

FLW proposed a solution to correct the (downward) bias in the estimation of 𝑚 (𝒙) by retaining 
standard distributional assumptions from the SFA literature (e.g., Normal noise, Half Normal 
inefficiency) and estimating the corresponding distributional parameters via maximum likelihood 
on the nonparametrically estimated residuals from a local-constant  (Nadaraya-Watson) 
regression estimator. Once these parameters have been estimated, the estimated conditional 
mean can be shifted (bias-corrected) by the estimated mean of in- efficiency (the mean correction 
factor). Under fairly weak conditions FLW show that the parameters of the composed error 
distribution can be consistently estimated at the parametric √𝑛 ra te .95 

The approach just described is what is known as plug-in (PI) likelihood. The PI approach of 
FLW begins by making assumptions on the error components in the stochastic production frontier 
model. They assume that noise follows a Normal distribution (as per usual, with zero mean 
and constant, but unknown, homoskedastic variance, 𝜎𝑣 ) and that technical inefficiency stems 
from a Half Normal distribution, with the unknown finite and homoskedastic variance to be 
estimated, 𝜎𝑢 . 

Given these distributional assumptions and the (biased) nonparametric estimator of the frontier, 
one would estimate the semiparametric stochastic frontier model and the unknown distributional 
parameters as follows. 

Step 1: Estimate the conditional expectation of (4.3), 𝐸[𝑦�|𝑥�], using nonparametric methods; FLW 
deploy kernel smoothing but a regression spline or sieve estimator would work equally well. Call 
this 𝑚∗� (𝑥�)and let the residuals be denoted 𝜀�

∗� = 𝑦� − 𝑔�(𝑥�). 

 
95 

  Martins-Filho & Yao (2015) showed that these parameter estimators are actually biased and inefficient. 
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Step 2: Define the concentrated variance of the composed error term 𝜎�(𝜆) as a function of 𝜆 =
𝜎�/𝜎� and 𝜎� = 𝜎�

� + 𝜎�
�, as follows: 

𝜎��(𝜆) =
𝑛�� ∑ ���

∗��
��

���

1 − 2𝜆�

𝜋(1 + 𝜆�)

. 

Step 3: Define the mean correction factor 𝛾 = �2/𝜋σ� as a function of 𝜆, i.e.,  

𝛾�(𝜆) =
√2𝜎�(𝜆)𝜆

�𝜋(1 + 𝜆�)��/�. 

Step 4: Estimate 𝜆 by maximizing the concentrated log likelihood function consistent with the 
Normal, Half Normal distributional assumptions which is  

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 �−𝑛 ln 𝜎� (𝜆) + � ln Φ�−𝜀��𝜆/𝜎�(𝜆)�
�

���

− �2𝜎��(𝜆)��� � 𝜀�
��

�

���

� , 

where 𝜀�� = 𝜀�
∗� − 𝛾�(𝜆). 

Step 5: The stochastic production frontier 𝑚(𝑥�) is consistently estimated by  

𝑚�(𝑥�) = 𝑚∗� (𝑥�) − 𝛾���̂��, 

where 𝛾���̂�� = √2𝜎���̂���̂�/ �𝜋�1 + 𝜆���� and 𝜎���̂�� = �𝜎����̂��. 

The concentration of the Normal-Half Normal likelihood function is for simplicity. One could also 
maximize the traditional ML function. If alternative distributional assumptions were made on u, for 
example exponential or truncated normal, a concentrated version of the log- likelihood function may 
not exist. The reason is that a simple closed form expression for 𝜎�� may not exist with alternative 
distributional assumptions. 

The PI-likelihood approach of FLW has been modified to impose axioms of production using a 
variety of approaches. For example, Parmeter & Racine (2012) and Noh (2014) use kernel based 
methods to impose monotonicity and concavity while Kuosmanen & Kortelainen (2012) use convex 
nonparametric least-squares (CNLS). Both of these approaches follow the same steps to estimate 
the distributional parameters, the only difference lies in how the conditional mean is estimated. 
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The Importance of homoskedasticity of the inefficiency distribution 

A key assumption that warrants further discussion as it pertains to the use of the methods of FLW, 
Parmeter & Racine (2012), Kuosmanen & Kortelainen (2012), and Noh (2014) is the constancy of 
all the parameters of the distribution of 𝑢𝑖. The reason for this is twofold. First, it is quite common to 
model ‘heteroskedasticity’ of 𝑢𝑖 on a set of variables, commonly termed determinants of inefficiency, 
typically denoted as the vector 𝒛. In this case, the first stage regression ignores this structure 
entirely. Textbook econometrics shows that traditional heteroskedasticity in the zero-mean, 
symmetric error term leads to no impact on the consistency of the estimator of the conditional mean 
(in this case the production frontier, 𝑚(·)). However, when 𝑢𝑖 depends on these determinants, the 
type of heteroskedasticity that arises is quite different from traditional heteroskedasticity in the two-
sided error term due to the truncated nature of the distribution of 𝑢𝑖 at 0. In this case, all of the 
moments of 𝑢𝑖 depend on the determinants, including the non-zero mean, which implies that the 
first stage estimation of the mean is either misspecified (an input also influences 𝑢𝑖), there is an 
omitted variable bias (a new variable was left out of the estimation of the conditional mean), or 
worse, both of these occur. Second, given the truncation of the distribution of ui, the moments of 
𝑢𝑖 will depend on all the parameters of the inefficiency distribution, so, for example, if 𝑢𝑖 were 
assumed to be Truncated Normal with pre-truncation mean parameter µ(𝒛) and pre-truncation 
variance parameter 𝜎𝑢(𝒛), even if one of these two parameters is constant (does not depend on 𝒛), 
the post-truncation mean of 𝑢𝑖 will depend on 𝒛. 

One might be tempted to follow Kuosmanen & Kortelainen (2012), Parmeter & Racine (2012), 
or Noh (2014), imposing the desired constraints first, and then recover 𝐸 [𝑢|𝒘] . However, these 
methods only work as intended when the distribution of inefficiency is independent  of 𝒙  and 𝒛, 
i.e. when 𝒖 is homoskedastic. The issue the applied researcher faces here is much more subtle. 
When heteroskedasticity is present  in u, one must recognize that what is being estimated is a 
conditional mean, and n o t a production frontier. Thus, it is not necessarily the case that the 
axioms of production should be expected to hold when estimating the conditional mean. 

Consider the case of the estimation of a production frontier. The conditional mean of output could 
be non-monotonic in w if 𝐸� [𝑢|𝒘 ] was non-monotonic, even though the production frontier is 
monotonic in w. Further, it is well known that adding two concave functions might not produce 
a concave function, so even if 𝐸� [𝑢|𝒘 ] was concave in 𝒘, subtracting it from the production 
frontier may not produce a concave production function in 𝒘. And therein lies the danger of 
imposing constraints when estimating the conditional mean, it is not necessarily the case that 
they should be satisfied. This might  seem innocuous except for the fact that imposing constraints 
on a conditional mean which are incorrect will not produce a consistent  estimator and typically, 
consistent  estimates in the first stage are needed for the second stage to produce valid estimates 
of inefficiency. 
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Take for example the discussion in Kuosmanen, Johnson & Saastamoinen (2015, pg. 233), who 
consider the estimation of a production frontier nonparametrically, while also allowing 𝒖 to 
depend on 𝑥 . In this case they state (in our notation) “…Note that the shape of function 𝑔 can 
differ from that of frontier m because 𝐸 (𝑢|𝒙 ) is a function of inputs 𝑥  . . . It is also worth noting 
that function g is not necessarily monotonic increasing and concave even if the production function 
m satisfies these axioms because − 𝐸 (𝑢|𝒙 ) can be a non- monotonic and non-concave function 
of inputs…”. To apply CNLS in step 1, we need to assume that the curvature of the production 
function m dominates and that function g is monotonic increasing and concave (at least by 
approximation).” Unless the conditional mean of output satisfies the axioms of production, it is 
recommended that the axiomatic restrictions be enforced a fte r consistent  unrestricted 
estimation of the conditional mean as this will ensure that the first stage estimator of the 
conditional mean is consistent. In the context of both Kuosmanen & Kortelainen (2012) and 
Parmeter & Racine (2012), the constraints would be enforced prior to the recovery of the 
distributional parameters. In the Kuosmanen & Kortelainen (2012) setting, CNLS works as an 
estimator b ecause of the constraints enforced, whereas Parmeter & Racine’s (2012) approach 
is identical to FLW if no constraints are enforced, and in fact if one has heteroskedasticity then 
the approach of Simar, Van Keilegom & Zelenyuk (2017) is really the best alternative provided 
prior to any constraints being enforced.  

Ensuring axioms of production  

As standard nonparametric estimation methods are known to overfit the in-sample data, there 
is the tendency that the estimated production frontier could be either non-monotonic or non-
concave, both of which may run contrary to the usual axioms of production.96 The approaches 
of Kuosmanen & Kortelainen (2012) and Parmeter & Racine (2012) are essentially identical to 
FLW except that they require the estimated production frontier to obey traditional axioms of 
production theory in economics, such as monotonicity and concavity, something that FLW (and a 
majority of other studies), did not accommodate in their approach, although the idea of imposing 
constraints is mentioned in passing.97 

Parmeter & Racine (2012) follow the framework of FLW closely, using the same kernel smoothing 
methods to estimate the conditional mean, but deploying constrained kernel estimation (Hall & 

 
96  Monotonicity or free disposability of inputs  and  outputs are  usually  assumed  or accepted  as  axioms  in production theory,  

though  there  are also exceptions,  e.g., cases with bad outputs or input  congestion,  which may  require  non-monotonicity (or 
weak disposability).  Concavity and  convexity  are  the  key properties  of cost and revenue  functions,  respectively,  implied by 
economic theory. 

97 We note here that the approach of FLW,  which is firmly entrenched as a stochastic frontier  model, is more general  than  the  
approaches of Kuosmanen  & Kortelainen (2012) and  Parmeter & Racine  (2012) as these methods  rely on axioms of 
production to produce  an initial,  consistent first stage estimator. Without these assumptions being true,  the nonparametric 
estimators which they  propose are inconsistent. 
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Huang 2001, Du, Parmeter & Racine 2013) to ensure that monotonicity and concavity hold. 
Kuosmanen & Kortelainen (2012) use an entirely different nonparametric estimator than that of 
FLW, known as concave nonparametric least-squares (CNLS), which also enforces monotonicity 
and concavity. One benefit of CNLS is that it has less bias than traditional kernel methods 
because it does not rely on smoothing the data, instead fitting the unknown frontier linearly and 
relying on the axioms of production to extract statistical gains (in terms of bias and mean square 
error) from the data (Seijo & Sen 2011). As yet, a detailed comparison of these two competing 
methods has not been considered. 

To detail the approach of Parmeter & Racine (2012), in what follows we let {(𝑥𝑖 , 𝑦𝑖 )}� � �
�  denote 

sample pairs of inputs and outputs and x a point of support at which we evaluate the frontier. The 
goal is to nonparametrically estimate the unknown production frontier 𝑚(𝑥) subject to constraints 
on 𝑚𝒔(𝑥) where s is a 𝑘-vector corresponding to the dimension of 𝑥. The elements of s 
represent  the order of the partial derivative corresponding to each element  of 𝑥. Thus 𝒔 =  (0, 0, 
. . . , 0) represents the function itself, while 𝒔 =  (1, 0, . . . , 0) represents ∂m(x)/∂x1 . In general, 
for 𝒔 =  (𝒔1, 𝒔2, . . . , 𝒔𝑘) we have 

𝑚(𝒔)(𝑥) =
𝜕��𝑚(𝑥)

𝜕𝑥�
��

, … ,
𝜕��𝑚(𝑥)

𝜕𝑥�
��

. 

We consider the class of kernel regression smoothers that can be written as linear combinations of 
the output 𝑦�, i.e., 

𝑚�(𝑥) = ∑ 𝑛���
��� 𝐴�(𝑥)𝑦�, 

which is a very broad class. For instance, the local constant or Nadaraya-Watson estimator (which 
is what is used by FLW) uses 

𝐴�(𝑥) =
𝑛𝐾�(𝑥� , 𝑥)

∑ 𝐾��𝑋�, 𝑥��
���

, 

where 𝐾�(⋅) is a generalized product kernel that admits both continuous and categorical inputs, and 
𝛾 is a vector of bandwidths; see Racine & Li (2004) for details. 

In order to impose constraints on a nonparametric frontier, we shall require a nonparametric 
estimator that satisfies constraints of the form 

𝑙(𝑥) ≤ 𝑚� (𝒔)(𝑥) ≤ 𝑢(𝑥) 

for arbitrary 𝑙(⋅), 𝑢(⋅), and 𝒔, where 𝑙(⋅) and 𝑢(⋅) represent (local) lower and upper bounds, 
respectively. 
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The constrained estimator is obtained by introducing an 𝑛-vector of weights 𝑝 chosen so that the 
resulting estimator satisfies the constraint above. We define the constrained estimator to be 

𝑚�(𝑥|𝑝) = ∑ 𝑝�
�
��� 𝐴�(𝑥)𝑦� .  

Construction of 𝑚�(𝑥|𝑝) proceeds as follows. Let 𝑝𝑢 be an n-vector with elements 1/ 𝑛  and let 
𝑝 be the vector of weights to be selected. In order to impose our constraints, we choose 𝑝 = �̂� 
to minimize the distance from p to the uniform weights 𝑝𝑖 =  1/ 𝑛  ∀𝑖 using the distance metric 
𝐷(𝑝)  = (𝑝𝑢 −  𝑝)′(𝑝𝑢 −  𝑝). The constrained estimator is then obtained by selecting those 
weights p that minimize 𝐷(𝑝) subject to constraints such as those given in the restrictions defined 
below, which can be cast as a general nonlinear programming problem. For the constraints 
we need to impose (frontier behaviour, monotonicity and concavity) we will have inequalities that 
are linear in p, which can be solved using standard quadratic programming methods and off-the-
shelf software.98 The appropriate bandwidth(s) for our unknown function can be estimated using 
any of the commonly available data-driven procedures and require estimation of the unrestricted 
function only. For notational simplicity we shall drop the ‘|𝑝’ notation with the understanding 
that the constrained estimator is that defined before. 

An interesting feature of the application of constrained kernel methods is that it selects the weights 
in a manner that minimizes differences between the uniform weights (i.e. 𝑝𝑢 ) and the amount 
necessary to enforce the constraints. Conceptually there is nothing wrong with this approach, 
but it has the wrong focus. What one should be more interested in is minimizing the difference 
between the unrestricted production frontier and the theoretically constrained frontier. This 
approach was proposed by Li, Liu & Li (2017), whose criterion function is 

𝑚𝑖𝑛 ��𝑚�(𝒙𝒊|𝒑) − 𝑚�(𝑥�)��
�

���

. 

With weights chosen in this fashion, Li et al. (2017) have shown that the resulting estimator 
significantly outperforms weights selected via (𝒑 − 𝒑 𝒖 )′(𝒑 − 𝒑𝒖). As with Parmeter & Racine 
(2012) and Kuosmanen & Kortelainen (2012), direct enforcement  of the constraints may not be 
correct if the object being restricted is a conditional mean, as opposed to the production frontier. 

Let our constrained estimator, 𝑚�(𝑥|𝑝), satisfy the following restrictions: 

� 𝑝�

�

���

𝐴�(𝑥�)𝑦� − 𝑦� ≥ 0, 

 
98  For example, in the R language it is solved using the  quadprog package, in GAUSS it is solved using the qprog command, and 

in MATLAB the  quadprog command. Even when n is quite large the solution is computationally fast using any of these packages. 
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� 𝑝�

�

���

� � 𝐴�
(𝒔)(𝑥) 

𝒔∈𝑺𝟏

� 𝑦� ≥ 0, 

� 𝑝�

�

���

� � 𝐴�
(𝒔)(𝑥)

𝒔∈𝑺𝟐

� 𝑦� ≤ 0, 

where 𝑺� is 

[(1,0, … ,0)& (0,1, … ,0)& ⋯ & (0,0, … ,1)]� ,  

while 𝑺𝟐 is 

[(2,0, … ,0)& (0,2, … ,0)& ⋯ & (0,0, … ,2)]� . 

These three conditions guarantee that the estimated frontier lies (weakly) above all observed 
output while respecting monotonicity and necessary conditions for concavity. One can follow the 
approach of Kuosmanen & Kortelainen (2012) and impose the necessary and sufficient  conditions 
for concavity, however, this leads to 𝑛(𝑛 − 1) constraints that need to be satisfied and not all 
applications will necessarily lead to a solution. A simpler approach would be to impose the 
necessary conditions for concavity, then check to see which of the sufficient conditions are 
violated, adding them to the optimization problem and repeating until no sufficient  conditions are 
violated. 

B.2 Improvements to DEA/FDH 

Stochastic DEA/FDH 

As is well known, one of the advantages of both DEA and FDH, inter alia, is that they handle the 
case of technologies with multiple outputs and multiple inputs in a simple manner. The stochastic 
versions of these approaches proposed in Simar (2007) and elaborated in Simar & Zelenyuk 
(2011), while combining non-parametric SFA with DEA or FDH also aimed to preserve this 
important advantage. Here we briefly summarize their approach as one of the ways to impose 
constraints of convexity or/and monotonicity (or free disposability) on technology, for the cases 
of technologies with multiple outputs and multiple inputs, and allowing for statistical noise or 
outliers, thus improving upon standard DEA/FDH. 

To facilitate further discussions, let 𝐲 ∈ 𝑅�
� denote the vector of outputs (and, as before, 𝐱 ∈ 𝑅�

��  
denote the vector of inputs) and Ψ denote the production technology set of all the feasible input-
output combinations, defined in general terms as 
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Ψ = �(𝑥, 𝑦) ∈ ℝ�
����  | 𝐱 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐲�. 

The Farrell-Debreu output oriented (technical) efficiency measure (Debreu 1951, Farrell 1957) of a 
DMU evaluated at an allocation (𝐱, 𝐲) is defined as  

𝛿(𝒙, 𝒚) = 𝑠𝑢𝑝{𝛿|(𝒙, 𝛿𝒚)} ∈ Ψ. 

Therefore 𝛿(𝒙, 𝒚) = 1 means that the DMU with (𝒙, 𝒚) is technically efficient (from an output oriented 
perspective), while 𝛿(𝒙, 𝒚) > 1 indicates inefficiency in the sense that it is possible to increase all 
the outputs 𝛿(𝒙, 𝒚) > 1 times in order to reach the technology frontier. Thus, the efficient level of 
output for an allocation (𝒙, 𝒚) is then given by  

𝑦� = 𝛿(𝒙, 𝒚)𝒚. 

Because Ψ is usually unobserved, and so are its frontier 𝑦�(𝒙, 𝒚) and its efficiency score 𝛿(𝒙, 𝒚), 
they need to be estimated using a sample of DMUs, which we will denote with 𝑺 = {(𝒙� , 𝒚�)|𝑖 =
1, … , 𝑛}. Specifically, recall that the FDH estimator for Ψ is given by 99 

Ψ����,� = �(𝒙, 𝒚) ∈ ℝ�
����|𝒙� ≤ 𝒙, 𝒚� ≥ 𝒚, ∀(𝒙� , 𝒚� ) ∈ 𝑺� 

while the DEA estimator for Ψ can be written as 

Ψ����,� = �(𝒙, 𝒚) ∈ ℝ�
����| � ζ�𝒙� ≤ 𝒙,

�

���

� ζ�𝒚� ≥ 𝒚,
�

���

ζ� ≥ 0, 𝑖 = 1, … , 𝑛, 𝜌� ≤ � ζ�

�

���

≤ 𝜌�� 

where 𝜌� = 0, 𝜌� = +∞ if one is willing to assume constant returns to scale (CRS) model (see Farrell 
1957, Charnes, Cooper & Rhodes 1978), 𝜌� = 0, 𝜌� = 1 if one is willing to assume decreasing 
returns to scale (DRS), and 𝜌� = 𝜌� = 1 if one assumes variable returns to scale (VRS) (e.g., see 
Färe & Grosskopf 1983, Banker, Charnes & Cooper 1984). Also note that Ψ����,�, under VRS, is a 
convex closure of Ψ����,�. The asymptotic properties of these estimators have been well studied and 
well summarized in the recent reviews of Simar & Wilson (2013, 2015). 

In a nutshell, the stochastic DEA/FDH approach can be summarized as follows (see Simar & 
Zelenyuk (2011) for further details): 

Step 1: Transform the data (𝒙� , 𝒚�), 𝑖 = 1, … , 𝑛, into polar coordinates for the outputs, denoting the 
transformed data as (𝒙� , 𝜔� , 𝜉𝒊), so that (𝒙, 𝒚) ⇔ (𝒙, 𝜔, 𝜉), where 𝜔 ∈ 𝑅� is the modulus and 𝜉 ∈
[0, 𝜋/2]��� is the amplitude (angle) of the vector 𝒚 describing the output-mix, i.e.,  

 
99  Free disposability of inputs and outputs is defined as (x,y)∈ Ψ implies that (x',y')∈Ψ for all $x'≥ x and y'≤ y. 
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𝜔 = 𝜔(𝒚) = �𝒚�𝒚 and 𝜉 = (𝜉�, … , 𝜉���) = 𝜉(𝒚), where for 𝑗 = 1, … , 𝑀 − 1, 𝜉� = arctan �����

�� � if 𝑦� >

0 or 𝜉� = �
�
 if 𝑦� = 0. 

Step 2: For each point of a selected grid (𝒙� , 𝒚�), 𝑘 = 1, … , 𝑛�, use a non-parametric or semi-
parametric methods described above to estimate the frontier in terms of 𝜔(𝑦), using the original 
sample 𝑺 = {(𝒙� , 𝒚�) :  𝑖 = 1, … , 𝑛}. For example, adapting the SVKZ approach, this will amount to 
estimating 𝑚(𝜉� , 𝒙�), using model  

log 𝜔� = 𝑚(𝜉� , 𝒙�) − 𝑢� + 𝑣� ,    𝑖 = 1, … , 𝑛 

where (𝑣|𝒙, 𝜉) ∼ 𝑓�|�,� is a zero-mean symmetric noise and (𝑢|𝒙, 𝒛, 𝜉) ∼ 𝑓�|\���,� is asymmetric 
inefficiency term (e.g., from Half-Normal distribution, conditional on (𝑥, 𝜉)), and denoting these 
estimates as 𝑚�(ξ� , 𝒙�). 

Step 3: Project the grid points (𝒙� , 𝒚�), 𝑘 = 1, … , 𝑛� onto the estimated frontier to obtain (𝒙� , 𝒚�
∗ ), 

where 𝒚�
∗  are the fitted (or pre-whitened or filtered) values of outputs for a given (𝜉� , 𝒙�), i.e.,  

𝒚�
∗ =

𝑒𝑥 𝑝�𝑚�(𝜉� , 𝒙�)�
𝜔�

𝒚� 

Step 4: For any given fixed value of interest (𝒙, 𝒚), run the desired DEA or FDH programs using the 
pre-whitened sample 𝑺∗ = {(𝒙� , 𝒚�

∗ ) : 𝑘 = 1, … , 𝑛�} to compute the SFDH or SDEA estimate of output 
oriented technical efficiency, denoted as 𝛿����� (𝒙, 𝒚) or 𝛿����� (𝒙, 𝒚), i.e.,  

𝛿����� (𝒙, 𝒚) = 𝑚𝑎𝑥 {𝛿|𝒙� ≤ 𝒙, 𝒚�
∗ ≥ 𝛿𝒚, ∀(𝒙� , 𝒚�) ∈ 𝑺∗} 

𝛿����� (𝒙, 𝒚) = 𝑚𝑎𝑥 �𝛿| � ζ�𝒙� ≤ 𝒙,
��

���

� ζ�𝒚�
∗ ≥ 𝛿𝒚,

��

���

ζ� ≥ 0, 𝑘 = 1, … , 𝑛�, 𝜌� ≤ � ζ�

��

���

≤ 𝜌�� 

In turn, one can obtain the SFDH and SDEA estimates, for any fixed point (𝒙, 𝒚), of the efficient 
frontier that obeys free disposability (or monotonicity) and, for the case of SDEA, convexity of 𝚿, 
using  

𝑦��(𝒙, 𝒚) = 𝛿(𝒙, 𝒚)𝒚 

Bootstrap DEA 

DEA is well known to produce a biased estimator of the frontier, and correspondingly a biased 
estimator of firm level inefficiency. The true frontier lies somewhere ab ove the DEA estimated 
frontier. This leads to estimated efficiency scores that are overly optimistic (or in statistical 
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parlance have an upward bias – with the estimated frontier having a downward bias). Simar & 
Wilson (1998, 2000) proposed a bootstrap algorithm to correct for this bias. This procedure was 
further enhanced by the theoretical underpinnings of Kneip, Simar & Wilson (2008). The general 
idea is that the known distribution of the difference between the estimated and bootstrapped 
efficiency scores is capable of mimicking the unknown distribution of the difference between 
the true and estimated efficiency scores. This dist ribution then facilitates estimation of both the 
bias and confidence intervals for the estimated individual efficiency scores. 

Our main setup is the technology set 𝛹, defined as 

𝛹 = {(𝒙 , 𝒚)|𝒙  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝒚}. 

Here we have p inputs (𝒙)  and q outputs (𝒚). Output-oriented technical efficiency 𝜃𝑗  (Farrell 
1957) for the point  (𝒙 𝑗 , 𝒚𝑗 )  is defined as 

 𝐹𝑂(𝒙 𝑗 , 𝒚𝑗 ) = 𝑠𝑢𝑝{𝜃𝑗 |(𝒙 𝑗 , 𝒚𝑗 / 𝜃 𝑗 ) ∈ 𝛹}, 

which is what is calculated by the DEA estimator using standard linear programming. At issue 
in practice is that 𝛹 is unknown (which then makes 𝐹𝑂(𝒙 𝑗 , 𝒚𝑗 ) unknown) and so we must 
estimate it. The standard approach to conducting statistical inference on 𝐹𝑂(𝒙 𝑗 , 𝒚𝑗 ) is to rely 
on the asymptotic theory found in Kneip et al. (2008) and to use bootstrapping. If the true 
technical efficiency score 𝐹 𝑂 (we drop the dependence on (𝒙 𝑗 , 𝒚𝑗 ) in what follows) comes from 
the data generating process 𝒫 and the estimator 𝐹��  comes from the known 𝒫� , then for a valid 

bootstrap estimator 𝐹�∗�  we have 

�𝐹�∗� /𝐹�� − 1� �𝒫�~ �𝐹�∗� /𝐹� − 1�� 𝒫. 

The consistent bootstrap of Kneip et al. (2008) uses subsampling across two steps. First, let 𝑚 =
𝑛� for 𝜅 ∈ (0,1) where 𝑛 is sample size and 𝑚 is the size of the subsample (𝜅 in this case controls 
how large or small the subsample is). The bootstrap is 

■ Step 1: Generate a bootstrap subsample of size 𝑚, 𝑆�
∗ = ��𝒙�

∗, 𝒚�
∗��

���

� by drawing randomly with 

replacement from the original sample data, 𝑆�
∗ = ��𝒙�, 𝒚���

���
� . 

■ Step 2: Apply the DEA estimator where the technology is defined for the subsample drawn in 

the previous step to obtain the bootstrap estimator 𝐹�∗� . 

These two steps need to be repeated a large number of times (𝐵). The bias-corrected DEA efficiency 
score is then given by 𝐹�

��
� = 𝐹�� − 𝑏𝚤𝑎𝑠�� , where the bias is calculated as  



BENCHMARKING TECHNIQUES AND PRACTICES FOR ELECTRICITY AND NATURAL GAS 
NETWORK OPERATORS 

frontier economics    120 

 

 
 
 

𝑏𝚤𝑎𝑠�� =
𝑚
𝑛

�/(�����)
�𝐵�� � 𝐹�

�∗� − 𝐹��
�

���

�. 

Essentially for each subsample we calculate the DEA estimator using that subsample only, then 
calculate efficiency scores from the full sample. We then calculate the average efficiency for each 
observation across all 𝐵 bootstraps and subtract from this the original efficiency score (the one that 
used the full sample). This is then adjusted for the rate of the subsample size (to accord with theory) 
prior to being subtracted from the original efficiency score.  

We can also calculate quantiles of this distribution to use to construct confidence intervals for the 
technical efficiency scores. Here we present the equal-tailed percentile approach to construct 
confidence intervals. For 𝛼 ∈ (0,1), the equal-tailed quantiles for the 𝑚th subsample are 𝛿�/�,� and 
𝛿���/�,� , such that  

𝑃 �𝑚�/(�����) �𝐹�∗� /𝐹�� − 1� ≤ 𝛿�/�,�� = 𝛼/2 

𝑃 �𝑚�/(�����) �𝐹�∗� /𝐹�� − 1� ≤ 𝛿���/�,�� = 1 − 𝛼/2. 

These quantiles lead to the equal-tailed 100(1 − 𝛼)% confidence interval for 𝐹� where the bounds 
are  

�
𝐹��

1 + 𝑛��/(�����)𝛿���/�,�
,

𝐹��

1 + 𝑛��/(�����)𝛿�/�,�
�. 

Two natural questions are the size of the subsample and the number of bootstraps to take. The 
number of bootstraps can easily be handled by simply increasing 𝐵 until a desired level of accuracy 
is retained. There are several theoretical results for the optimal size of the subsample. 
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