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1. Overview 

1.1 Context 

1.01 This note is a comment to the Oxera report “A critical assessment of TCB18 gas”, 
called Oxera (2020) below, released 18/08/2020 on behalf GTS participating in 
the gas benchmarking. Oxera (2020) draws heavily on a previous analysis for 
electricity, Oxera (2020b) that is referenced when differing. 

1.02 The format of the note is brief as most documentation is provided in the following 
documents, released during the project: 

1) Sumicsid (2019) Norm Grid Development, Technical Report V1.3, 2019-02-27. 

2) Sumicsid and CEER (2019a) Pan-European cost-efficiency benchmark for gas 
transmission system operators, Main report V1.2, 2019-07-17. 

3) Sumicsid and CEER (2019b) Project TCB18 Individual Benchmarking Reports, GAS 
TSO, V1.0, 2019-07-25. (Published for GTS, among others). 

4) Sumicsid and CEER (2020) Dynamic efficiency and productivity changes for gas 
transmission system operators, Main report V1.0, 2020-04-14. 

1.03 The outline of the response restates the main arguments of Oxera (2020) in an 
orange shaded paragraph. In some cases, the original statements have been 
summarized and reformulated without intention of changing the contents and 
bearing of the argument.  

1.04 The response provides an open discussion in a normal paragraph, concluding in a 
shaded grey paragraph as to our assessment of the impact of the argument on the 
viability of the TCB18 benchmarking results.  

1.2 Outline 

1.05 In Chapter 2 we recall the principles of the study and the methodological choices 
made in it, as well as the differences in focus in Oxera (2020) and the TCB18 project.   

1.06 In Chapter 3 we respond in more detail on the main critique raised by chapter in 
Oxera (2020).  

1.07 Appendix A contains a simulation of panel benchmarking data with data similar to 
TCB18, showing the effects of DEA and SFA in presence of collinear data. This 
appendix serves to support some of our comments in Chapter 3. 
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2. TCB18 Model Conception 

2.1 Scope and purpose of the Oxera work 

2.01 Oxera (2020) and Oxera (2020b) can be seen as a compilation of separate 
sensitivity analyses, applied to each element in a benchmarking study such as 
TCB18. The separate comments illustrate, at best, the range and frequency of 
impact for changes to assumptions, parameters and data in the study. However, 
since the development of an alternative model (or process) are not in scope of Oxera 
(2020), the sections cannot be compiled to a common assessment of the model 
quality of TCB18. E.g., in the critique of the model specification to be composed of 
asset-based output parameters, no comment is made to the choice of a 
deterministic model (DEA) and its consequences. Elsewhere, the method choice is 
criticized for being an unconstrained DEA, rather than a parametric method (OLS 
or SFA) although this would assume equally strong assumptions of the distribution 
of errors or inefficiency. Thus, to clarify the fundamental choices in the TCB18 study, 
we here revisit the data processing, the method choice and the model specification.   

2.2 Data processing and validation 

2.02 Data quality is primordial for benchmarking and particular attention has been given 
to the design of an optimal data collection and validation system.  

2.03 The principles for the data collection are to ensure full understanding of the data 
protocol by all project participants. In TCB18 this was implemented by separate 
releases of the data specifications and guides in December 2017 with several 
rounds of reviews and two project workshops, leading to a final release in March 
2018. Specific templates in Excel were developed and also revised. The project 
participants had ample of time and opportunity to ask questions about the data 
definitions, both at the interactive workshop and on open and closed areas of the 
project platform. Choices of principal nature, such as the activity decomposition and 
the scope of the benchmarking were discussed and decided jointly with the NRAs in 
the CEER project steering group (PSG). It can therefore be asserted that the data 
protocol is well known by the project participants.  

2.04 The obligation to comply with any data collection procedure for a TSO is ultimately 
defined and enforced by the corresponding NRA. It was therefore an important 
principle to pass the data collection and primary data validation through the NRA, 
thereby inciting commitment and awareness of the TSO operations and concerns. 
All data exchanges, both submissions, requests for clarifications and releases of 
processed data, passed over the NRA to ensure full compliance.  

2.05 The primary data validation was performed by the NRAs using a specific data 
auditing protocol, requiring the NRA to explicitly endorse the quality of the data at 
submission.  

2.06 The role of the consultants in the data validation was to assist in the cross validation, 
since some TSOs did not allow other NRAs to access their data. The consultants 
preformed data validation of both technical and economic data in addition to the 
checks performed by the NRAs. The results for the data validations, frequently 
resulting in questions and comments, were uploaded to the project platform. Thus, 
each party in the project brings a specific skill to the task, improving overall quality, 
independency and consistency.  
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2.3 Choice of method 

2.07 The choice of the benchmarking method (DEA) already hints at the type of model 
and functional form that will be privileged: the most intuitive and natural 
deterministic form that explains the current data and that is consistent with existing 
knowledge about what drives gas transmission cost. 

2.4 Model specification 

2.08 Cost function modelling in gas transmission is not a new science, it is well 
established both in the engineering and production economic literature. Whereas 
the reasoning in Oxera (2020) seems to suggest a wide range of different factors of 
unknown influence to be investigated, the structure of a good cost model can be 
derived from some simple principles, proven both from engineering practice, 
reference network analysis and transmission system benchmarking. 

2.09 A gas transmission system operator is a techno-economic system with in principle 
four main sources of cost: 

1) Transport work (direct variable cost for the transport of gas) 
2) Capacity provision (fixed and variable cost for the capacity to deliver gas) 

3) Grid provision (fixed and variable cost for the connection of a grid user to the main 
grid at a given spatial location). 

4) Customer service (variable costs for the administration of grid users, safety, training 
and information). 

2.10 As will be discussed below, the inclusion or exclusion of the categories above are 
consequences of the choice of model in the study.  

Transport work 

2.11 The transmission system provides a transport service proportional to the volume and 
distance of gas transported through the system. The transport work is associated 
with a direct cost of compressor fuel as well as costs linked to the losses of gas in 
the system. 

2.12 A direct volume parameter as output renders the model sensitive to the cost of gas 
(depending on the market conditions for its purchase) and also utilization oriented. 
The share of cost in direct compressor fuel depends on external demand, not under 
the control of the TSO. This means that for a given technical efficiency (fixed capex, 
fixed opex except compressor fuel), the score is proportional to the demand, the 
higher output, the higher score. Since this is not informative for judging managerial 
efficiency in gas transmission, the studies Jamasb et al. (2007), E2GAS and TCB18-
GAS chose not to include delivery volume as an output. Instead, the transport work 
dimension was expressed as the pipeline system (Jamasb et al. 2007) and its 
generalization, the normgrid proxy for grid size in E2GAS and TCB18-GAS. These 
parameters relate to the size of the network, without depending on its utilization.  

Capacity provision   

2.13 The gas transmission operators provide potential services through the capacity 
mobilized for the customers, irrespective of its utilization in any given time (see 
transport work). This dimension is usually covered by parameters linked to peak 
load, maximum capacity, compressor power, storage volume, et c.). The capacity 
provision cost is primarily capex linked to the assets dedicated to the physical 
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capacity. This dimension was covered in Jamabs et al. (2007) and in E2GAS as 
maximum capacity (m3/year) and in TCB18-GAS as maximum compressor power 
(MW). The difficulty with maximum capacity is that it is related to compressor power 
for adjacent grids (no cost causality), entry and exit pressure and pipe dimensions. 
As the former is an important shortcoming and the latter is covered in TCB18-GAS 
through the NormGrid parameter, the physical compressor power was chosen. Note 
that this parameter includes all compressors irrespective of age, engine type and 
control equipment, which makes it different from the compressor part in NormGrid.   

Grid provision 

2.14 Independent of the actual volume of gas transported or the maximum flow 
potentially offered, the pipeline system must connect spatially distributed load and 
source nodes with installations that can contain and transport gas in safe and 
reliable manner. The infrastructure quality of the grid in itself, i.e. the 
interconnection of the input and output nodes is denoted as the grid provision. 
Whereas an increase in the compressor capacity at one of a few stations can imply 
significant changes to the capacity provision, the grid is normally only expanded in 
smaller steps, when opening new delivery areas, storage facilities and 
interconnections.  The grid provision is present in almost all gas transmission models 
in the form of unweighted or weighted circuit length of the pipelines. In TCB18-GAS 
the NormGrid proxy contains an engineering-cost weighted circuit length of the 
pipelines.  

Service provision 

2.15 The service provision is often measured as the number of connection points or 
customers when dealing with distribution system operators. However, for gas TSOs 
the number of customers is usually very limited as the DSO (distribution system 
operators) handle direct delivery to low-pressure customers. In TCB18-GAS, the 
number of connection points, as in E2GAS and many other studies, is included as 
an output to cover this dimension.  

Environmental factors 

2.16 The class of environmental variables contains parameters that may have a non-
controllable influence on operating or capital costs without being differentiated as 
a client output. In this class we may often find indicators of geography (topology, 
obstacles), climate (temperature, humidity, salinity), soil (type, slope, zoning) and 
density (sprawl, imposed feed-in locations). One challenge with this class of 
parameters is that they may be difficult to validate statistically in a small data 
sample. Their role of potential complicating factors will therefore have to be 
validated by other studies or in a process of individual claims from the TSOs. 
Another challenge is that in a small dataset, the explicit inclusion of many 
complicating factors will put pressure on the degrees of freedom in a statistical 
analysis. This is also the approach we have taken in this study. We have used an 
elaborate engineering weight system of the grid assets to reflect the investment and 
operating conditions. In this way, environmental factors can to a large extent be 
captured by the traditional output parameters. 

2.17 An additional level of environmental correction was achieved by independently 
letting the Sumicsid power engineers derive and list the complexity factors 
increasing costs from a technical perspective. Note the methodological difference 
between doing this step prior to the specification of the model compared to a ‘data 
mining’ approach where various factors with unknown effects are used 
indiscriminately as regressors in a cost function. The risk with the latter approach is 
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to find a set of factors that may fit a particular data set by second-order or spurious 
correlation, but without any techno-economic rationale. Another approach could be 
to let the environmental factors absorb any variability in cost at the average cost 
function stage. For example, if particularly inefficient operators have more railroad 
per surface area, a regression may suggest that the cost should be attributed to the 
railroads rather than to inefficiency. The staged method in TCB18 avoids this 
problem since the magnitudes of the impact is estimated a priori without 
inefficiency.   

2.18 The variables chosen for TCB18-GAS are then two related to transport/grid 
provision, enhanced to directly address environmental complexity 
(yNormGrid_zSlope and yPipes_Landhumidity), one covering capacity provision 
(yCompressors.power_tot) and one for the service provision (yConnections_tot). We 
describe each shortly below.  

yNormGrid_zSlope 

2.19 The NormGrid provides a Totex-relevant proxy for the total pipeline system, 
summing all relevant assets with weights corresponding to their Capex and Opex 
impact. As documented in Sumicsid (2019), certain environmental conditions 
influence the cost of constructing and operating the pipeline system. These factors 
include land use type, topography (slope), vegetation type, soil humidity, subsurface 
features (rockiness, stones), extreme temperatures and salinity. Extensive statistical 
tests revealed correlations and interaction between several of the factors, e.g., 
vegetation and landuse type, subsurface features and topography. The most 
important factor for pipelines was topography (slope class), relating to costs of 
construction (reinforcements, site access) and to operation (maintenance access). 
Most other factors, with the exception of humidity, correlates with the normalized 
grid slope-weighted parameter. Thus, this parameter was chosen as the primary 
variable, explaining by itself over 95% of the variance in Totex in robust regression. 

yConnections_tot 

2.20 The different connection points in the transmission grid cause certain costs of 
operation, metering, monitoring etc. Statistically, the sum of the connections, 
yConnections_tot is the preferred variable, adjusted for ownership asset by asset.  

yCompressors.power_tot 

2.21 The transport capacity of the transmission system is measured through the sum of 
the installed power of the compressors units, adjusted for ownership, irrespective of 
type of compressor unit and type of unit. The parameter is frequently used in 
international comparisons and correlates both to Capex and Opex since a higher 
capacity requires direct costs for operation and maintenance. 

yPipes_Landhumidity 

2.22 Pipeline installations are especially subject to cost increases resulting from high 
humidity and wet soil. This results from more expensive construction site 
management, drainage, isolation not accounted for in the NormGrid and resources 
devoted to evacuation of water for repairs and preventive maintenance of segments. 
It was seen that dimensioning and age were not proportional to these costs. Thus, 
to capture this effect a technical parameter was created from the unweighted 
pipeline length combined with the landhumidity factors from the GIS and 
engineering calculations. Increasing the explanatory value, it forms a good 
complement to the primary parameter for grid provision, yNormGrid_zSlope. 
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3. Oxera critique 

3.1 Transparency [Oxera, ch 2] 

3.01 Oxera (2020, Chapter 2) argues that the methodological choices in the project were 
not transparently presented to the participants.   

3.02 Modeling decision on Returns to Scale (RTS) was not presented with evidence at W2-
W4, only at W5 and in the final report.   

3.03 No information was given on peer companies. 

3.04 Difficult to understand construction of parameters, suggesting a NormGrid 
calculator in Excel. 

3.05 The project transparency as regards to data, or results enabling the reconstruction 
of data, the degrees of liberty are limited. The policy chosen by Sumicsid in the 
workshop and data releases was monitored and endorsed by the CEER PSG, 
considering the public interest.  

3.06 The returns to scale assumptions will be discussed in detail from art 3.95 below. The 
concepts of returns to scale and the process were discussed already at W1 
(Methodological Approach, page 17). Given that the last incoming data arrived very 
close to W3, it is evident that no results for the RTS could be presented at that 
workshop. At W4, already very dense with results on the environmental modelling, 
the linearity (CRS) of the average cost function was presented with regression 
results.  

3.07 The final report was designed as a relatively non-technical and clear document for 
the final results, not a process documentation for technical readers.  The project 
participants found ample of information on the worksmart platform, workshop 
presentations, methodological notes and examples, Excel calculators and individual 
releases of data, results and models. The interaction was also facilitated by Q&A 
sessions at the workshops, HelpDesk and a specific workshop entirely devoted to 
methodological questions posed by the project participants.  

3.08 Claim 3.03 is a direct consequence of the confidentiality of data. The decision was 
made explicit by the PSG also for peers.  

3.09 Claim 3.04 cannot be supported. Not only were there several releases of data, 
specifically an Excel version of a NormGrid calculator was provided for both 
electricity and gas: Release TCB18_ngcalc_gas_V13.xls , Version 1.3, 08/03/2019. 

 

3.2 Data collection and validation [Oxera, ch 3] 

3.10 Oxera (2020, Chapter 3) makes the argument that the TCB18 data collection and 
construction process does not enable a sufficiently harmonized dataset to undertake 
robust cost benchmarking. The section is largely extrapolating from an earlier report 
on the electricity data. 
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Data errors [Oxera, section 3.1] 

3.11 Data validation by NRAs is ineffective as they only have data from their national 
TSO(s). Unclear whether guidelines were followed.  

3.12 Data reporting for significant rehabilitations shows that (some) project participants 
have misinterpreted the reporting guidelines. This could bias the results towards 
older TSOs. 

3.13 The German TSOs were not active and the validation of the data for them was 
unclear. The assumptions by Sumicsid on the compressor power are unstated. 

3.14 German data may be incorrect due to missing ownership data (footnote 75). 

3.15 In electricity, using a 10% monte carlo simulation, an error margin of 10%-18% was 
obtained, this may apply to gas as well. Also, SFA in electricity did not find any 
inefficiency, so all estimated efficiency gaps in TCB18 gas could be statistical noise. 

3.16 As a development of an earlier project (E2GAS), TCB18 has reinforced the data 
collection and the data validation in several aspects. The project has defined data 
collection standards, written guides and templates, for consultation with all project 
participants. The data collected by the TSO passed through several rounds of NRA 
validation before submission to the consultant, performing a cross validation of both 
economic and technical data. The data validation followed a specific protocol, which 
was documented for all project participants, including the German TSOs. 

3.17 Some assumptions had to be made when adding the German data to the sample. 
These assumptions were made applying cautiousness, i.e. if anything it would let 
the advantage to the participating TSOs. E.g., the German TSOs reported all cost in 
in-scope the functions Transport and Maintenance, meaning that no indirect cost 
was allocated to other functions. Also, they could not use the deductions for 
insurances, non-grid telecommunications equipment, significant rehabilitations and 
allowed out-of-scope deductions in TCB18.   The compressor station cost in 
NormGrid is linear in power (MW), hence the split of the aggregate power for the 
German TSO to the individual stations has no impact on the results. Any (positive) 
distribution could be used to obtain the same result. The missing age parameter for 
the German TSOs is implemented as an average age for each asset.  

3.18 Thus, the allegations in Oxera (2020) in this regard are speculative extrapolations 
from Oxera (2020b) without any concrete evidence of errors and the text contains 
unsupported allegations. E.g., the allegation in 3.14 above is wrong, the ownership 
was corrected for German TSOs.  

3.19 We find no logical reason to consider the observation that only a few TSO reported 
significant rehabilitations as a proof of misreporting. To our best information, no 
project participant objected to the interpretation when presented at a Workshop.  

3.20 The section on data errors contains no concrete evidence of errors, it extrapolates 
from another dataset and speculates on the intentions and processes in the project. 
Although empty, the allegations in this section are used in subsequent sections of 
Oxera (2020) as proven facts to support other elements.  

Choice of TOTEX [Oxera, section 3.2]  

3.21 This section is essentially equivalent to the one in Oxera (2020b). 

3.22 TCB18 uses TOTEX, this is only acceptable if OPEX and CAPEX are equivalent at the 
margin and the ratio is controllable.  
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3.23 The choice of choosing Total expenditure (TOTEX) as the dependent variable or input 
in the benchmarking is the correct choice both theoretically and practically. TOTEX 
is used in the regulation in a number of European countries, such as Austria, 
Germany, Lithuania, Netherlands, Norway, Portugal, and Sweden, in 
benchmarking, TFP-estimations and as basis for the revenue-cap calculations, see 
CEER (2017). The opinion that TOTEX is a sound basis is also shared by other 
stakeholders, customers and operators as reported in CEER (2018). It is also the 
consensus of academic researchers, see e.g. the gas transmission benchmarking 
model in Jamasb et a. (2008). Contrary to the argumentation in Oxera (2020), 
benchmarking limited to e.g. OPEX would be extremely sensitive to the exact ratio 
(OPEX/CAPEX) that Oxera (2020) considers as partially non-controllable. By 
changing from leasing to direct investment, a TSO could show radical improvements 
in partial OPEX efficiency, but potentially without any positive impact on overall 
efficiency. Oxera (2020) provides an example for a TSO leasing its grid, we agree 
and provide it as an example of the appropriateness of the method.  

3.24 The only substantive argument in this section concerns the cost normalization 
differences for elements that could potentially appear in either OPEX or CAPEX. 
Contrary to what is stated in Oxera (2020, Table 3.1), we confirm that the time 
period and the inflation indeed are adjusted year by year when a pooled model or 
analysis is made. However, the personnel cost in OPEX is normalized using the PLICI 
index, whereas the CAPEX is only inflation-adjusted. The reason for this is the lack 
of verifiable information concerning the labor element in the investments, origin 
and composition. To explore the sensitivity with respect to this factor, a sensitivity 
analysis is included in Sumicsid and CEER (2019a, art 5.26). The labor part is 
assumed to be between 0% and 25% of the overall investment amount. The relative 
difference is shown to be minimal (<1%) for the mean score and individually in the 
range between (-9% to +3%). Additional analyses in Agrell and Bogetoft (2020) for 
electricity confirm this result in TCB18, but here also including a change of index to 
the general LCIS index.   

3.25 The critique against the choice to TOTEX lacks substance, both in theory and 
practice. The simulation presented lacks relevance and is inconsistent with the 
premises of the stated argument since it makes OPEX and CAPEX fully independent 
inputs, which is non-sensical.  

3.26 TOTEX is the only robust input for regulatory benchmarking, since it makes the 
financial and operational solutions irrelevant. TCB18 has fully explored the 
sensitivity with respect to labor-cost corrections in CAPEX, finally not made for the 
general run due to lack of verifiable data.  

3.27 The partial efficiencies on OPEX at a given level of CAPEX and for CAPEX at a given 
level of OPEX, are presented and made available to all project participants as part 
of Sumicsid and CEER (2019b).  

Indexation of OPEX and CAPEX [Oxera, section 3.3] 

3.28 This section is essentially equivalent to the one in Oxera (2020b). 

3.29 Oxera (2020) considers that the price-level differences are incorrectly adjusted for. 
PLICI does not consider other production factors beyond civil engineering.  

3.30 There is no correction for price-levels besides direct manpower cost.  

3.31 TCB18 assumes open markets for all services and goods.  
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3.32 Objective differences may exist due to transport costs across Europe. Investments 
are governed by local regulation Investments over time have had different 
conditions  

3.33 The choice of index for input-price adjustments has a methodological and an 
empirical side.  

3.34 Methodologically, the correction for local (potentially operator-specific) input prices 
is the correct approach when the said prices are exogenous and well-identified. An 
operator required to buy land for its assets in a specific location cannot be 
responsible for the overall expenditure since the location is forced by the nature of 
the service. In the same manner, the permanent staff of a transmission system 
operator must be recruited and hired in accordance with national employment 
conditions. On the other hand, services such as invoicing, repairs, or communication 
could potentially be subcontracted or outsourced to service providers in the same 
or in neighboring states, employing part or all of the labor force under other 
conditions. Likewise, whereas the land and legal cost of right-of-way are intrinsically 
local, the value of the equipment itself and its installation are less bound to the 
national price-level. Frequently, transmission system operators are the only eligible 
buyers of certain equipment and services in their respective countries, which means 
that they hardly can rely upon local suppliers to provide for their needs. An 
erroneous correction of input prices, such as assuming that a TSO in a low-labor 
cost area can also acquire e.g., compressor pumps less expensively than in a high-
labor cost area, will artificially skew the benchmarked OPEX negatively for the 
operator, irrespective of the observed cost.  

3.35 Empirically, the question at hand is whether the basis for the input price correction 
can be well identified or even exists. Ideally, we would desire an exogenous index 
for the price development for all services required by a TSO and that for each 
country. Naturally, such index cannot be produced due to endogeneity in most 
countries and also the task variation across TSOs and over time. The second 
alternative is then to find well-defined exogenous indexes for the services for which 
correction is desired. Provided that such indexes exist over sufficient time and for all 
countries involved in the benchmarking, the operation also requires verifiable data 
separated over all such indexed services. E.g., an index for civil engineering involves 
a certain share of administrative IT-services, for which an alternative index exists, 
as well as construction, maintenance, auditing, et c. In reality, the choice is better 
guided towards a robust and well-defined basis and the closest widely available 
index.  

3.36 In TCB18 the choice has been made to adjust for the local salary differences using 
the civil engineering index PLICI from EUROSTAT. The index is exogenous, available 
for all countries and defined for staff-intensive services without much outsourcing 
within the TSOs.  

3.37 Oxera (2020) argues that TCB18 should adjust for all services and for investment 
goods. We will analyze these suggestions in turns. 

Full service-price adjustments 

3.38 Oxera (2020) claims that the adjustment of labor cost is insufficient and that not 
enough evidence is provided to validate the hypotheses behind the methodological 
choice. It is not clear what type of evidence Oxera would consider necessary or 
relevant in this case. Assuming that TSO X is shown to buy some services more 
expensively than TSO Y, is this evidence of varying input prices or inefficient 
procurement? Detailed evidence of outsourced services in other sectors, would this 
be representative? The argument is tautological and ignores the purpose of the 
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benchmarking – to provide a stable platform for best-practice performance. Ad hoc 
adjustments to particular conditions, legacy systems and traditions would invalidate 
the status of the best-practice peer, as its status might heavily depend on ad hoc 
assumptions of past or current conditions. In the case of market changes, opening 
and improved procurement, the benchmarking would no longer converge to the 
optimal best-practice cost, but to an arbitrary state trying to explain the past. The 
benchmarking in itself is not the regulatory ruling, it is the NRA using the 
information for reviewing the performance of the TSO that would take into 
consideration specific suboptimal conditions that explain its occurrence.  

3.39 Thus, in TCB18 and as before, we turned the question around and invited the TSOs 
in the operator-specific data collection in TCB18 to provide evidence of operator- 
or country-specific regulations or conditions that would be lasting, material and 
exogenous.   

3.40 The correction of input prices by general price indexes is not harmless. Without 
observing the origin and controllability of the expenditure, it may lead to undue 
protection of inefficient procurement in high-cost areas and to unfair penalties for 
procurement in low-cost areas. The technical and economic experts in the team 
have observed throughout several benchmarking projects examples of services and 
goods procured internationally for transmission services. It has been judged more 
stringent in this project to refrain from assumptions regarding the nature of 
outsourcing (e.g. labor contents).  

Adjustments of investment costs 

3.41 Oxera (2020) argues for a 100% adjustment of the investment cost using PLICI. It is 
claimed that this corresponds to regulatory practice, citing the PR13, ORR (2013) 
study and one specific example for national differences in salary in OFGEM RIIO-
ED1. In the case of ORR (2013), the application is actually different: the 
international data is transformed to GBP (the reference currency) using PPP for a 
five-year horizon using a TOTEX measure in nominal value, then using the UK 
inflation conversion. Notwithstanding some sensitivity analyses in several countries 
(Norway, Germany), we note no utilization of this drastic correction in any prior 
international benchmarking in energy, such as ECOM+ (2003, 2005), Jamasb et 
al. (2007), e3GRID (2009, 2012), e2GAS (2013). The claim thus stays with Oxera 
alone. As above, the approach is economically dubious: a major part of the 
investment cost in energy infrastructure is composed of materials (steel, copper) and 
components manufactured by a few global suppliers. Local adjustments would 
assume that the entire basket of overall investments would be correlated to the 
labor-intensive civil engineering part, usually corresponding to about 25% of the 
total investment. Oxera (2020) concludes from a comparison (Fig 3.2) that price-
level differences can result from using a different index on the investment cost. 
However, Oxera provides no rationale, nor evidence as to why there could be 
sourcing and procurement from non-national markets for services, investment labor 
and goods.    

3.42 In TCB18, the impact of the choice of index is illustrated in Agrell-Bogetoft(2020) 
and the impact of labor-cost differences in the final report (cf. 3.24 above).   

3.43 The application of price-level indexes to all OPEX and/or to all labor costs in 
investments is introducing an unnecessary and potentially harmful assumption 
about the markets for goods and services in transmission provision. The index 
comparisons shown in Oxera (2020) neither represent well-supported cost 
differences due to regulatory or fiscal rules, nor do they correspond to changes in 
the efficiency scores (which depend on relative changes).   
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Allocation of indirect costs [Oxera, section 3.4] 

3.44 This section is essentially equivalent to the one in Oxera (2020b) but the conclusions 
are somewhat different. 

3.45 The sensitivity to the allocation rule is not reported (3.4.2) 

3.46 Proposed to use only in-scope cost to allocate indirect costs (3.4.3) 

3.47 The causation and treatment of support cost (indirect cost in TCB18) for TSOs is a 
recurrent question. In some past international benchmarking, all indirect costs have 
been included (e3GRID, 2013), in others various allocation keys have been used to 
create a fair comparison.  

3.48 In TCB18, calculations were made as suggested in Oxera (2020, p.43) based on no 
indirect costs, full allocation, individual keys and common allocation keys. The 
results of these various options were analyzed. The impact of indirect cost was also 
part of the simulations in Sumicsid-CEER (2020).  

3.49 The choice of allocation basis (full scope, in-scope) is a policy issue, discussed with 
the CEER PSG. Although Oxera (2020), on behalf of TSO not owning an LNG 
terminal, recommends only using in-scope costs as a basis, the opposite argument 
could also be made. Indirect costs for management, HR, procurement and IT-
functions could serve other regulated functions as well in the interest of an overall 
cost-minimization. Contrary to Oxera’s request, these TSOs may rightly claim to be 
subject to a bias in the benchmarking since their other activities are not considered.  

3.50 The allocation policy for indirect cost is primarily a choice of principle, the impact of 
on the efficiency results is minimal. The project steering group decided to use a 
partial allocation based also on non-benchmarked activities, as these were 
considered as relevant and economically beneficial to the core activity. 

3.3 Model development [Oxera, ch 4] 

3.51 Oxera (2020) generally states that the TCB18 model development appears 
arbitrarily restrictive and inconsistent with the scientific literature.  

Cost driver analysis [Oxera, section 4.1] 

3.52 Cost driver analysis was not outlined and clearly presented (4.1.3).  

3.53 The econometric results (OLS) are inconsistent, since two outputs have negative 
signs. The current model is not validated and should not be used.  

3.54 ROLS excludes outliers, these should be analyzed. 

3.55 The error terms in OLS and ROLS are assumed symmetrical and normally 
distributed, but if inefficiency is present there will be a skew, thus the statistical 
inference is inconclusive.  

3.56 R-squared is not an informative measure of model quality. 

3.57 The application of Lasso should not be used for determining the model size. 

3.58 Sumicsid has not demonstrated evidence to show absence of omitted cost drivers 
from the model. 
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3.59 The design of the final report has been addressed in art 3.07 above, the full 
narrative for the cost driver analysis is provided in other documents as often is the 
case in final reports for benchmarking projects.  

3.60 The question of model specification using a regression-based average cost function 
versus a frontier cost model is a classical question in benchmarking. As Oxera states, 
the residual can be expected to be skewed if there is substantial inefficiency in the 
sample. The alternative would therefore be to use a parametric frontier model, such 
as SFA, to assist in the model specification phase. Applying a parametric frontier 
model, as will be shown, requires a number of non-trivial technical assumptions 
(distribution of the error term, structure of inefficiency term, et c.) that in themselves 
affect the outcome, but also a sufficiently large dataset to perform the assessment. 

3.61 In Appendix A we show a constructive simulation for a benchmarking model of a 
size, complexity and collinearity corresponding to that of TCB18. The model has a 
known efficiency level and can therefore be gauged against the fit to a true 
outcome. The regression coefficients (OLS) for larger models are negative for one 
or two of the parameters, just as in TCB18-GAS. However, as shown the model 
gives sound estimates in DEA, rapidly converging to the true value from above 
(cautiousness) whereas the SFA estimation is demonstrated as of lower precision in 
this case. The simulation shows that for a model like TCB18, DEA provides stable 
and robust results even for smaller samples, whereas the parametric SFA model is 
unable to derive results for smaller samples and a larger error in estimation for 
larger data sets. There are a number of comparisons between the frontier analysis 
techniques DEA and SFA, such as Ferrer and Lovell (1990), Hjalmarsson et al. 
(1996), Bauer et al. (1993), Reinhard et al. (2000), Kousmanen et al. (2013), Andor 
and Hesse (2014). These analyses advocate different methods depending on the 
assumptions made for the underlying data references, but the consensus is that SFA 
performs generally well for applications with random noise and a homogenous 
known technology, whereas DEA is preferred for settings with low noise and 
heterogenous technology due to its flexibility. Our results confirm the latter point, 
not questioning the relevance and performance of SFA under other settings.   

3.62 The scenario with negative coefficients for normal cost drivers is common in 
infrastructure models for production, cost and frontier functions. In the first CEER 
gas transmission benchmarking by Jamasb et al. (2007) the output “units” 
(yCompressors.power_tot) turns out significant with negative sign in Totex and 
Revenue models (see Table 3-1 below). The authors still do not dismiss the models, 
as “…[it] serves two important purposes. First, it gives the benchmark R-squared as 
no other model (given our variables) can achieve a higher overall correlation between 
inputs and outputs. Secondly, as for each output variable all the coefficients are jointly 
significant no output variables is completely irrelevant in a statistical sense for the 
determination of costs.” (Jamasb et al., 2007, p. 44). In passing we note that the 
authors proceed directly to the definition of their final two-parameter model 
(including a non-significant parameter Capacity from the table below) with the brief 
justification “having experimented with various model specifications we selected the 
models shown in [Table].” 
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Table 3-1 OLS results for GTSO in Jamasb et al. (2007). 

 
 

3.63 The effect of negative coefficients is also well recognized in larger models in other 
sectors. In ORR (2013) and some preceding reports on related data, counterintuitive 
findings for the negative sign of an obviously cost-increasing parameter (ELEC, 
length of electrified lines) are reported and analyzed.  

3.64 The negative signs of some parameters in OLS estimates should not be interpreted 
as sudden proofs of reversed cost causality, they are consequences of joint 
estimations of collinear parameters that individually and techno-economically are 
validated as cost drivers. The estimation of the DEA model is not affected by these 
coefficients as DEA imposes a piece-wise linear cost function that freely estimates 
the frontier, not a linear hull for the average cost. The suggestion to discard the 
model has no support.  

3.65 The presence of potential outliers in the data is anticipated in the data validation, 
model development tools and outlier filter for the calculation of the final scores. The 
outcomes in terms of number of outliers in each step are documented, the individual 
TSOs are also informed about their classification in their individual reports. Outliers 
in ROLS are internally analyzed for frequency, but the occurrence as extreme point 
in a ROLS estimate for average cost does not necessarily imply anything for the 
status as outlier in terms of frontier estimates. 

3.66 The model fit (adjusted R2) is not a primary output of the analysis, no predictions or 
estimations are made with the average cost models. The model fit is also evaluated 
by standard measures such as Akaike Information Criterion (AIC), the Bayesian 
Information Criterion (BIC) and Mallow’s Cp to determine the informativeness of 
the models. 

3.67 The Lasso regressions included all available parameters at the project model 
specification stage. They were indeed helpful to assess the variability and regularity 
of the sample, without resulting in techno-economically relevant models. However, 
the explanatory power of some proxies (road length, ruggedness) lead the project 
to pursue the collection and definition of individual GIS data. The Lasso regressions 
cannot provide absolute limits for the model size, but indications on the required 
number of parameters. In the case of TCB18-GAS, the minimal models in Lasso 

the explanatory power of the independent variables. R-squared ranges from 0 to 1. The higher 

its value, the stronger the common explanatory power of the independent variables. 

These models suffer from two shortcomings. First, the high correlation amongst the 

explanatory variables leads to insignificant coefficients that would be significant individually. 

Second, the models produce negative coefficients for Units and Delivery, which is 

inconsistent with the theory. Nevertheless the model serves two important purposes. First, it 

gives the benchmark R-squared as no other model (given our variables) can achieve a higher 

overall correlation between inputs and outputs. Secondly, as for each output variable all the 

coefficients are jointly significant no output variables is completely irrelevant in a statistical 

sense for the determination of costs. 

Table 15: Regression results for full Cobb-Douglas models 
 O&M Totex1 Totex2 Revenue 

Capacity 0.989* 0.422 0.382 0.720^ 
  (0.420) (0.383) (0.416) (0.428) 
Delivery -0.504 0.252 0.310 -0.124 
  (0.410) (0.374) (0.406) (0.417) 
Mains 0.336** 0.453** 0.413** 0.456** 
  (0.054) (0.050) (0.054) (0.055) 
Horsepower 0.042 0.033 0.130* 0.191** 
  (0.052) (0.047) (0.051) (0.053) 
Units 0.317** -0.146** -0.255** -0.270** 
  (0.045) (0.041) (0.044) (0.045) 
Load factor 0.750 0.142 0.173 0.671 
  (0.678) (0.618) (0.672) (0.689) 
adj. R Squared 0.88 0.85 0.83 0.82 
** p<0.01; * p<0.05; ^ p<0.10 two tailed 
 

Having experimented with various model specifications we selected the models shown in 

Table 16. Given the large number of available cost drivers, using only two might seem odd. 

However, the high correlations among the cost drivers justify this selection. Also, note that 

the model excludes throughput entirely. Given economies of scale and the fact that in most 

countries the tariff component for capacity far outweighs the component for throughput the 

model seems plausible. 

 

 

 

 44
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were very small, just as the models in e.g Jamasb et al. (2007). Still, the project 
chose a model with a higher explanatory power. 

3.68 Theoretically, there can be an infinite number of omitted variables from a model. 
The intervention of the modeler is limited to the systematic test of whether a set of 
identified and a priori relevant variables outside of the model can explain efficiency. 
This is what is documented in the second stage part of the report. 

NormGrid construction [Oxera, section 4.2] 

3.69 The underlying background data for the normgrid is subject to uncertainty, not 
accounted for in DEA. 

3.70 Derivation of NormGrid is unclear, the shares of different assets among the TSOs 
vary, weights may have an impact on efficiency.  

3.71 Haney and Pollitt (2013) argue that aggregation in DEA contradicts the principle of 
benchmarking. The model should use each asset class as a separate output. Oxera 
argues that weight restrictions could be used if some classes get excessive dual 
weights. 

3.72 The estimation of the normgrid component values is not absolute, but relative. This 
significantly reduces the uncertainty compared to norm value approaches aiming at 
current absolute values. Absolute estimates of cost or value would depend on the 
place, time and circumstances (e.g., scope of intervention) for the projects 
undertaken. In a large assessment with many thousands of assets as in TCB18, it 
would be impossible to collect data for all assets from the same place, time and 
setting. Summing costs from different applications would then be introducing an 
uncertainty in the analysis.  Relative estimations, on the other hand, relate to the 
scaling up of a reference asset in each category, which makes the ranking very 
robust. Although the absolute cost for increasing a dimension in a gas pipeline vary 
with respect to the material cost a given year (steel), the factor for its increase 
remains stable across countries.  The final calibration to actual cost is then a simple 
scaling for readability, but it is not necessary and has no impact on the DEA scores. 

3.73 Assuming the relative cost values to be mean-correct, then the large number of 
assets involved for each operator would also tend to reduce the variability around 
the mean. The inclusion of aggregation or scaling weights in benchmarking to 
obtain output parameters (e.g., hours, tons, products, passengers) is extremely 
widespread and almost inevitable in any non-trivial application. To our best 
knowledge, no published study of DEA has included any specific analysis on this 
dimension.   

3.74 A model specification using the different asset classes (up to six) as separate outputs 
in DEA is inconsistent in Oxera’s own assessment for two reasons. First, an average 
cost estimation of the normgrid volumes by asset class would result in one or several 
negative coefficients due to collinearity. Deleting the concerned asset classes from 
the model (in accordance with the proposals from section 4.1) would lead to 
arbitrary bias in the benchmarking by eliminating potentially large and important 
asset classes.  Second, filtering the operators for asset intensity and/or using output 
weights would introduce technical constants that are difficult to validate, basically 
substituting the clarity of a production economic model for a subjective weighing of 
different assets.  

3.75 An output specification using open dual weights has no merit, aggregation is 
inevitable in any asset provision benchmarking.  
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Environmental factors [Oxera, section 4.3] 

3.76 The environmental factors are not documented in the final report.  

3.77 The overall approach to account for environmental factors is inappropriate since the 
dual weights in DEA might not be allocated to the factor for which the environmental 
correction is applied, e.g., Normgrid.  

3.78 The environmental adjustments ignore asset location. 

3.79 The correlation between selected environmental factors (scaled by NormGrid) is 
misleading. 

3.80 Some factors, such as density, should be used as separate outputs. 

3.81 The fact that dual weights are not assigned to the outputs in the same proportions 
is an intrinsic consequence of the weight flexibility of DEA. The dual weights are 
endogenously set to maximize the score for each operator, taking into account the 
most “competitive” dimensions. Given that many operators share similar operating 
conditions, very few have ideal conditions, it is not expected to see monotonous 
changes of score while changing the environmental conditions. This effect is not 
linked to the environmental correction as such, but also applies to any output 
dimension that is dominated for a specific operator. 

3.82 The partial correlation of the environmental factors on cost is misleading since the 
cost includes other elements than the grid, as well as an efficiency term. The 
environmental complexity factors are explicitly not derived from the actual data in 
order to avoid this endogeneity, they are well-established and independent 
engineering cost estimates for the additional cost of added environmental 
challenges. The approach suggested in Oxera (2020) would lead to erroneous (or 
no) conclusions regarding the cost causality of the environmental factors.  

3.83 The environmental adjustments in the international benchmarking that Oxera 
(2020) refers to up until E2GAS, i.e. in Jamasb et al. (2007), ORR(2013) and E3GRID 
(2009, 2013), were absent or reduced to binary variable (“special conditions”). In 
E2GAS (Agrell et al., 2016) an item-specific locational environmental correction 
factor was introduced in the benchmarking. Although this contributed to a higher 
explanatory power for the model, the variable definition and validation problems 
related to the approach make it unfeasible for a larger and permanent application. 
The approach in TCB18 is a step forward, using detailed, public and verifiable data 
to determine the objective service conditions in the service areas for the operators. 
It is correct that the asset locations are not available and used in the environmental 
corrections. However, the average area approach is equitable and can be seen as 
a proxy for the planning challenge involved: although the pipelines in a specific 
country may be placed in the low valleys rather than across mountains, the difficulty 
of finding the right path in narrow segments and passages is not costless. The 
approach can also be said to represent the environmental complexity of the 
potential rather than actual service area, an argument that may influence the 
dimensioning and location of stations and assets in anticipation of future 
connections.     

3.84 The empirical result for unit cost compared to environmental adjustments is partial: 
the unit cost depends also on other outputs and the level of efficiency. To avoid 
endogeneity in the estimation in which the environmental factors would serve as 
coefficients covering for various other cost effects, there was no direct calibration of 
the TCB18-data towards the environmental complexity factors.  
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3.85 The use of environmental factors, such as density, as separate output factors would 
be a poor idea. Without scaling on some basis (e.g., assets) and weight restrictions 
the factor would introduce an arbitrarily high valuation of the complexity, as 
documented in the E3GRID (2013) model.     

3.86 The environmental complexity factors are independent expert assessments, as used 
in any techno-economic study. They are designed not to cover other effects from a 
multi-output and efficiency perspective. Detailed sensitivity analysis in Agrell and 
Bogetoft (2020) shows a relatively low sensitivity to the choice of environmental 
factors or their parameters, also confirmed by the analysis in Oxera (2020). 

3.4 Model assumptions [Oxera, ch 5] 

Use of DEA as method [Oxera, section 5.1] 

3.87 The section with general critique of DEA as a method is new in Oxera (2020). 

3.88 DEA is deterministic, should (also) use SFA as in BNetzA and in E2GAS to account 
for stochastic errors in data.  

3.89 Even absence of results in SFA should be reported. 

3.90 There have already been around 20 studies published on productivity models in gas 
transmission, some of which cited above and in the next section. Many of those have 
used DEA and/or SFA as well as other econometric formulations; Cobb-Douglas, 
translog, COLS, etc. to investigate the properties. In E2GAS, an evolution of the 
models discussed in Jamasb et al. (2007) was developed and tested with both 
techniques, DEA for the main estimation and SFA for validation. The results for SFA 
confirmed the few necessary hypotheses in DEA (returns to scale), but as shown in 
the Appendix the SFA formulation performs poorly for small data sets with high fit 
to a linear cost function, just as in TCB18-GAS.  

3.91 The German incentive regulation of energy networks is defined closely by the decree 
ARegV, including the use of the frontier methods DEA and SFA. However, it should 
be noted that even under ARegV, the application to smaller dataset (e.g. gas RTO) 
has been made without SFA for the same reasons evoked here.  

3.92 E2GAS (Agrell et al. , 2016) was the seminal study for gas transmission operators, 
it was not clear that the modelling approach would yield stable results for a sector 
that had no experience with benchmarking.  As in most scientific studies, the 
obtained models were therefore compared to previous work and the results 
compared to those obtained by secondary methods such as SFA and Unit-Cost 
analysis. It was clearly highlighted in the analysis (Agrell et al. , 2016, art 5.35) that 
the use of these methods, drawing on different assumptions, should not be seen as 
alternatives, but merely as validation of the approach. It is customary to run more 
extensive method cross-validation for seminal studies, but not necessarily for 
repeated applications of an already established and proven method on a data from 
the same sector.  

3.93 The differences between DEA and SFA can be illustrated with a simple example. The 
use of DEA as cost estimator in regulatory economics is comparable to its use in 
evaluation of multi-dimensional auctions in environmental protection. In this 
application in Denmark, farmers or their associations offer projects as ‘bundles’ 
involving acres of land using organic agriculture, protection of land and species, 
ground water offtake and wild forest growth in open volumes at a given price (cost). 
The regulator (proxy-buyer) chooses a selection of the efficient offers in DEA to 
allocate the subsidies in the most efficient way across the required land and 
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volumes. Note that this is done ex ante as an auction, the agents are paid to achieve 
their offer. If SFA were to be applied to this scenario, the offers would be smoothed 
out since the best are considered “too good to be true” and the differences between 
the offers would be considered as “chance” not to be included in the auction. In 
consequence, almost no offer would fully win the auction, but the more different 
they are, the more of them would be partially selected. In an auction this makes 
little sense. However, using validated ex post data for performed services and 
installations put into service in regulatory economics is also assumed not to be 
random (as the tariffs are deterministic and the services billed for should be as well). 
Hence, an SFA validation might give some indication of the rank order of operators, 
but not of the actual magnitude of efficiency.  

3.94 DEA has been chosen by CEER for the TCB18 benchmarking on cross-sectional data 
for its absence of a priori assumptions on the production function and the structure 
of the potential inefficiency in the sector. Crossvalidation with other methods is in 
general a good idea, provided they can produce valid and comparable results. The 
model specification for TCB18-GAS is based on a model structure and data that are 
already validated with a number of different techniques, including SFA in the two 
recent studies of European data. In TCB18-GAS, the model development aimed at 
an improved explanatory power for the new environmental factors. This was 
successful and useful for the DEA model intended for application. However, the 
higher fit reduces the noise necessary for parametric models such as SFA to 
determine their estimates and separating random noise from inefficiency. Validation 
with SFA is also not applicable in TCB18 as the model requires larger datasets to 
yield useful results and even so does not converge to the correct efficiency for the 
type of cost function use (see Appendix). Consequently, SFA validation was not 
judged to be informative for the models. Validation with a simple ratio method such 
as Unit Cost (cf. ECOM, E3GRID) is of course possible but the results would be 
misleading as this ignores the multiple outputs and the environmental aspects..  

 

Returns to scale [Oxera, section 5.2] 

3.95 This section is essentially equivalent to the one in Oxera (2020b). 

3.96 Banker F-test and sum of coefficients in log-linear regression are not presented in 
the report.  

3.97 Banker test: Oxera finds variable returns to scale (VRS), not non-decreasing returns 
to scale (NDRS). Sum of coefficients is less than 1, but not significantly (constant 
returns to scale; CRS). 

3.98 Testing intercept in levels: weak support for decreasing returns to scale (DRS). 

3.99 Sumicsid should explain why large TSOs are systematically estimated to be 
inefficient under NDRS. 

3.100 Oxera hypothesizes that the allegedly lower efficiency of larger TSOs could be 
caused by non-modelled factors such as old asset age, density or general size 
effects. 

3.101 Oxera (2020) devotes a large discussion to a question that is settled since quite a 
while in the academic world. Already in 1949, the young doctoral student Hollis 
Chenery, later becoming the World Bank’s VP for Development Policy, published a 
fundamental paper combining microeconomic theory with production economics 
and engineering. The application in Chenery (1949) was indeed the natural gas 
transmission industry. Based on a detailed cost analysis of just two assets: the 
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pipeline and the compressor station, he showed how the output could be flexibly 
adjusted by installing more compressors for the same pipeline, by extending the 
network, or by the two actions. Mathematically, the significant economies of scale 
in gas transmission were established already in 1949. Drawing on the theoretical 
and analytical work, successors found empirical evidence for scale economies, such 
as Robinson (1972) at 2.07 and Callen (1978) at 1.17. A widely cited work by 
Aivazian et al. (1987) investigate the issue whether economies of scale or 
technological change drives productivity growth in the gas transmission industry. 
Based on a timeseries from 1953 to 1979, the authors show persistent and 
significant economies of scale across time, dominating the technological change as 
productivity driver. Sickles and Streitwieser (1992, 1998) and Granderson and Linvill 
(1996) confirm the conclusion under regulatory constraints, showing that gas 
transmission operators rely basically entirely on scale economies for efficiency and 
productivity, the technological change being driven by regulatory pricing.  

3.102 Gordon et al. (2003) addresses the issue of economies of scale and scope from a 
fundamental viewpoint using the concept of sub additive cost functions, a condition 
for the quality of a natural monopoly for the industry. In short, a sub additive cost 
function shows decreasing marginal cost per output when volume or some size 
proxy is increased. Using Canadian data for gas transmission, Gordon et al. (2003) 
confirms the economies of scale as the dominant cause of subadditivity and the 
resulting natural monopoly status. Yepez (2008) is returning to the engineering 
roots of Chenery (1949) and looks at the cost function for interstate gas 
transmission, focusing on pipeline and compressor station costs, decomposed in 
capital, operating and maintenance costs. The paper shows consistent increasing 
returns to scale in all input dimensions, as well as in total expenditure. Massol 
(2011) confirms the engineering cost function by Yepez (2008) in showing that even 
a single-factor model suffices to validate the economies of scale in the sector.  

3.103 Jamasb et al. (2008) discuss the links between European and US gas transmission 
operators, empirically validating economies of scale using two cost translog cost 
functions with values around 0.7 – 0.9 (meaning that a 100% increase in output 
would only increase cost by 70% - 90%). The study, also using DEA for a Malmquist 
analysis can be said to be a direct predecessor for the European regulatory study 
Jamasb et al. (2007) on behalf of ERGEG (now: CEER).   

3.104 The abundant evidence on the economies of scale above was reconfirmed in the 
E2GAS project, Agrell et al. (2016) for a subset of the European gas TSOs in the 
TCB18 project, using an log-model with the outputs NormGrid, connection points 
and maximum capacity.  

3.105 The returns to scale assumption in TCB18 is based on econometric tests, 
observations from the empirical distribution of efficiency and techno-economic 
considerations from the model specification. Given the number of observations in a 
given project and gradual model development in the fit to controllable cost, it is 
evident that the existing scientific and techno-economic knowledge is utilized in the 
modelling.  

3.106 Although one may argue that the statistical documentation on returns to scale is not 
complete in the TCB18 report, the objection behind reveals a conjecture that is 
flawed. As tests for returns to scale are hypothesis-based, the approach advocated 
by Oxera (2020) would logically assume that even if economies of scale are proven 
scientifically in numerous studies and in a previous study for the same operators, a 
repetition with a smaller number of operators would then lead to the rejection of 
the hypothesis. We consider this idea contrary to a scientific approach to 
performance assessment.  
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3.107 The default approach in DEA should be to impose only the minimally necessary 
assumptions, to avoid a priori influence on the data and the efficiency assessment. 
In this case, it would correspond to variable returns to scale (VRS), meaning that 
there could be both increasing and decreasing returns to scale in the data set. 

3.108 Besides the abundant evidence from other studies for increasing returns to scale (or 
to be more exact NDRS), there are also specific regulatory arguments for this choice. 
Experience and data also from other energy network benchmarking highlight the 
observation that the concessions for national transmission system operators cannot 
readily be extended outside of their borders, for technical, regulatory and economic 
reasons. It may be infeasible to gauge a small operator against a larger with the 
argument that full scale-efficiency should be obtained. 

3.109 First, a simple look at the distribution of efficiency in TCB18 gas provides concrete 
evidence for the assumption. A plot1 shows observations of high or full efficiency 
across all sizes, from the smallest to the largest operators. Even under NDRS (the 
score is almost identical for CRS, we can observe inefficient and efficient 
observations across different sizes. It is true that there are only four large units in 
the sample, but also among these units there is considerable differences in 
efficiency.  

3.110 VRS as assumption is rejected by all published studies and the previous regulatory 
benchmarking, but also simple techno-economic evidence: no valid reason can be 
found to suggest that larger operators would be unable to organize their services 
and assets as efficiently as smaller units. Oxera (2020) provide no other argument 
for why this assumption would be valid beyond purely small sample size effects. The 
purported speculations regarding asset age and density have not been validated 
with statistical tests. Age across the sample does not significantly increase the total 
cost per output. Density is covered in the model through the landuse factors that 
were extensively tested without revealing any specific effects related to size. Finally, 
the idea of some generic diseconomies of scale contradicts both theory and all 
empirical studies in the area. 

3.111 The assumption for NDRS is based on techno-economic arguments linked to the 
abundant evidence from other studies, previous transmission studies, concession 
areas and the model specification (NormGrid covers all relevant assets). In 
particular the conjecture that there suddenly would be diseconomies of scale in this 
dataset for gas transmission is not only statistically unfounded but also absurd from 
a techno-economic viewpoint.  

Outlier analysis [Oxera, section 5.3] 

3.112 This section is essentially equivalent to the one in Oxera (2020b). 

3.113 A technical section largely based on Oxera work for the industry against BNetzA 
and the incentive regulation in Germany. 

3.114 TCB18 uses outlier detection as prescribed in German law (ARegV), but Oxera has 
supported industry appeals against ARegV and BNetzA in that respect.  

3.115 Scores are not half-normal, but DEA is non-parametric. The Banker test is of value 
only for large samples. 

3.116 Efficiencies of the same unit in both numerator and denominator is not consistent 
with Banker independent samples. 

 
1 The plot contains confidential information concerning all TSOs and cannot be reproduced here. 
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3.117 Sumicsid has agreed on the objections against the F-test in other legal processes. 

3.118 Super efficiency should be iterative (Thanassoulis, 1999). 

3.119 Oxera (2020) is partially repeating arguments from an appeal that they were 
involved in on behalf of operators against BNetzA concerning the implementation 
of the outlier detection in accordance with ARegV. Oxera argues against 
dominance, super-efficiency tests and in favor of bootstrapping and/or sequential 
application of outlier filtering. 

3.120 We will not repeat the lengthy arguments in the appeal against BNetzA here (cf. 
Agrell and Bogetoft, 2019), it suffices to clarify that contrary to the allusions in Oxera 
(2020), the appeal was rejected and the outlier detection procedure in Germany 
practiced by BNetzA for both electricity and gas networks at all levels remain the 
most advanced and best practice in regulatory benchmarking. To our knowledge 
and not contradicted by Oxera, no NRA uses the suggested bootstrapping 
procedure.  

3.121 Outlier detection is a vast area of academic discussion, see also Agrell and Niknazar 
(2014) with various models advanced for detecting outliers, defined in various ways. 
As noted in CEER-Sumicsid (2019), outlier detection for the type of sample used in 
TCB18 is not merely a mechanical application of the criteria in ARegV, it also 
includes econometric reviews such as Cook’s distance and foremost studies of how 
individual units appear in different graphs for unit costs and certain partial 
measures. This holistic approach, combined with the data cross validation, warrants 
for the greatest possible protection of the replicability of the efficient frontier. The 
exclusion of one TSO is based on a combination of econometric and techno-
economic observations.   

3.122 The outlier detection in TCB18 follows best practice for regulatory benchmarking, 
well beyond studies cited in Oxera (2020) such as the ORP (2013) or others in which 
mainly ad hoc inspection is used. Outlier detection in a small data set is always a 
careful multi-tool balance, not a mechanical application. 

Second-stage analysis [Oxera, section 5.4] 

3.123 This section is essentially equivalent to the one in Oxera (2020b). 

3.124 Second-stage analysis is not correct, the second-stage parameters are not 
independent from the first-stage parameters, no correction for serial correlation. 

3.125 The procedure does not guarantee absence of omitted cost drivers in gas,  

3.126 The critique against the post-run (second stage) analysis is not well posed since the 
purpose is not related to model-specific variable selection. The post-run analysis 
aims at investigating and validating the potential presence of systematic bias for 
operators with specific conditions with respect to the efficiency score used in the 
regulation. The list of parameters includes also elements already in the model, for 
information about potential impact and not as an omitted variable.   

3.127 The model specification process includes a structured approach for covering the 
services of a TSO; grid provision, capacity provision, customer service. An additional 
stage included systematic incorporation of environmental conditions. The post-run 
second-stage process is intended to detect potential bias in the scores, not the 
inclusion of specific parameters. 
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Frontier shift [Oxera, section 5.5] 

3.128 Regress in dynamics means that the model is wrong, it misses changes in regulatory 
burden over time.  

3.129 The realistic explanation for the regress is model misspecification, model does not 
take into account differences in efficient expenditure over time. 

3.130 The dynamic report is unclear on outlier analysis and the return to scale chosen. 

3.131 The caveat in the dynamic report hints at the role of sample size. 

3.132 Inconsistent to assess one result (static) as more robust than another (dynamic) if 
both are estimated using the same model and similar datasets. Both results should 
be rejected. 

3.133 The critique by Oxera (2020) is essentially based on two (unstated) assumptions: 

1) Productivity development in (gas) transmission must be positive, unless the model is 
misspecified. 

2) The predictive quality of a Malmquist model must be the same as that for a cross-
sectional run with the same model. 

3.134 Concerning the claim (1), it is fundamentally wrong from both theoretical, 
economical and empirical reasons.    

3.135 Theoretically, it is inconceivable that a given sector would show positive productivity 
growth irrespective of the sample of operators, regulatory regime and length of time 
period. In particular in an infrastructure sector like transmission with lumpy 
investments, it is unlikely that new technology and processes can penetrate the 
operations continuously over time. A more plausible hypothesis is that new 
technology is implemented only in discrete steps and that the intensity of 
restructuring of the processes depend on the regulatory and managerial context at 
the time. Investments in pipelines and compressors are discrete and the efficiency 
is increasing with the utilization of the assets, as well as the learning and 
procurement effects of input scale. It is therefore logical that a major component 
(such as in Callen (1978)) of productivity increases are caused by capacity 
investments.   

3.136 Empirically, our hypothesis is supported by the fundamental work on the sources of 
productivity growth, such as Aivazian et al. (1987) showing the general dependency 
on scale expansion to attain productivity growth for the early days of automation 
1953-1979. During this period the pipeline network was augmented by larger 
diameter line-pipe and the compressor stations were converted to automatic or 
semi-automatic operations as well as more fuel-efficient engines, leading to fuel 
and labor cost savings and capacity increases. Consequently, this period was 
characterized by productivity increases linked primarily to technical change 
(contribution 53%) and secondary to returns to scale (contribution 34%).  

3.137 However, Sickles and Streitwieser (1992, 1998) analyze the US interstate gas TSO 
for the period 1977-1985 following the introduction of new regulation, the Natural 
Gas Policy Act (NGPA) in 1978. Using both DEA and SFA, they find consistent proofs 
of declining efficiency during the period, on average the TFP regress was -1.18% 
per year. Granderson and Linvill (1996) use a translog cost function to analyze the 
same data (1977-1987), confirming the negative productivity development, but 
refining the analysis to consider the impact of regulatory cost caps. Since the 
regulation in itself initially limit the cost increases, the efficiency effect is seemingly 
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positive. Correcting for the effects of lagged regulation caps, Granderson and Linvill 
(1996) find that scale economies account for 53% of the productivity growth.  

3.138 In general transmission, temporary productivity regress is not rare, e.g. Llorca et al. 
(2016) find regress in USA for electricity transmission during the period 2001-2009 
using an SFA application correcting for environmental effects. Using a TFP 
approach, AER (2019) reports continuous regression in electricity transmission from 
about 2009 to 2018, see also Figure 1. The reasons for regress are probably 
multiple and beyond this note.  

 

 
Figure 1 Total factor productivity for industry, electricity transmission and utilities, 2006-2018. 

AER (2019). 

 

3.139 Topp and Kulys (2012) look at general multifactor productivity in the Australian 
utilities (electricity, gas, water and waste services) 1985-2010. As seen in Figure 2, 
the trend is negative from 1997. The analysis here points at cyclical investment 
patterns (see above), unmeasured output and quality changes or incremental higher 
cost for expansion.  
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Figure 2 Productivity development utilities, Australia, 1985-2010 (Topp and Kulys, 2012). 

 
 

3.140 Oxera (2020c) investigates the productivity development for the Belgian electricity 
and gas distributor Fluvius 2015-19 using a DEA Malmquist model with the outputs 
pipelines, connection points and energy delivered and constant returns to scale 
(CRS). The findings are presented in Table 3-2 below. As seen, Oxera (2020c) 
concludes on a negative frontier shift (regress) for the period, without any 
suggestions regarding the model validity or the data situation in the report. Note 
that the policy recommendation for the commissioning regulator (VREG) in Oxera 
(2020c) is to use a positive frontier shift derived with another model amounting to 
0.4% per year.  

 
Table 3-2 Frontier shift results in GDSO 2015-19, Oxera (2020c). 

 
 

3.141 The allegation that productivity regress should be an indication of model errors is 
rejected by theory, economics and empirical results from a number of authors 
(including Oxera). Productivity changes in gas transmission have occurred in both 
directions and the reasons evoked by Oxera (2020) are not consistent with scientific 
work in the area.  

3.142 The second claim relates to the differences in interpretation between the dynamic 
and static models and their results. 

3.143 The dynamic model is a conventional Malmquist formulation under CRS, excluding 
outliers and TSOs for which only a single year is available. As seen in Table 3-3 
below, a reproduction of Table 3-4 in Sumicsid-CEER (2020), the annual datasets 

   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2  Electricity, gas, water and waste services: Inputs, output 
and multifactor productivity, 1985-86 to 2009-10 
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A key piece of the MFP puzzle in utilities, therefore, is to analyse the individual 
factors contributing to changes over time in input (and, less so, output) growth rates. 
To explore this issue, estimates were made of inputs, outputs and MFP within three 
of the four utilities subdivisions. The subdivision MFP estimates were derived using 
data and a methodology that was as consistent as possible with the approach used 
by the ABS to generate estimates of MFP in utilities as a whole. 

Subdivision MFP estimates 

The three subdivisions for which MFP growth was estimated were:   

x Electricity supply (ES)  

x Water supply, sewerage and drainage services (WSSD)  

x Gas supply (GS).  

Due to a lack of data, MFP estimates were not able to be produced for the fourth  
subdivision — Waste services. However, ABS data shows that the Waste services  
subdivision had only a small impact on the underlying developments and trends in  
utilities MFP.  

The subdivision MFP estimates were generated over a longer time frame (1974-75  
to 2009-10) than the ABS estimates for the division as a whole (only available from  

OVERVIEW XVII 
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frontier shift efficiency targets in some jurisdictions.79 These methods are 
typically used when there is a sufficiently large number of independent DSOs 
(although the appropriate sample size is an empirical question).  

Fluvius is the operator of nine gas distribution networks and ten electricity 
distribution networks. This sample size is smaller than that used by other 
regulators that use direct methods of frontier shift estimation. Furthermore, the 
networks are not sufficiently independent to allow for a robust analysis. We 
therefore consider DEA as a method for providing qualitative (i.e. directional) 
evidence regarding the extent to which the current cost trends are driven by 
frontier shift, rather than informing an exact number. 

DEA estimates a specific value of frontier shift for each DSO, depending on the 
mix of outputs it produces and the evolution of the efficient frontier at that point. 
To derive an overall estimate of the frontier shift that the industry has achieved, 
we take a weighted average of the estimated frontier shift across DSOs, where 
the weights are defined as the share of the DSO’s costs in the total industry 
costs. This is done to improve the comparability of the estimated frontier shift 
and the methodology used to set cost targets.80 

The input used in the DEA model is nominal endogenous costs, consistent with 
the expenditure that is assessed in VREG’s methodology to determine the 
efficiency factor, 𝑥. The outputs used in the DEA model are network length, 
number of connections, and energy delivered. This is consistent with 
applications of this approach in the gas and electricity distribution sectors. 

Table 4.2 shows the estimated frontier shift for gas and electricity distribution. 
In this table, a positive number indicates an improvement in best practice 
(indicating a reduction in expenditure). The estimated frontier shift in electricity 
distribution is positive and above our central estimate of the net frontier shift of 
0.4% p.a. that the DSOs can achieve in the next regulatory period (although 
some sensitivities suggest that greater efficiency gains are feasible). For this 
reason, we do not consider it appropriate to impose an additional net frontier 
shift target in electricity distribution.  

Conversely, the estimated net frontier shift is negative in gas distribution and is 
significantly below what we estimate from indirect analysis. For this reason, we 
consider that the full frontier shift estimated from the indirect analysis can be 
applied in gas distribution.  

Table 4.2 Frontier shift²DEA 

  2015±18 2015±19 
Electricity distribution (% p.a.) 1.4% 0.8% 
Gas distribution (% p.a.) -0.1% -2.4% 

Note: Consistent with scientific best practice in estimating frontier shift, a CRS technology is 
assumed when constructing the MPI (see, for example, Thanassoulis, E. (2001), Introduction to 
the Theory and Application of Data Envelopment Analysis: A foundation text with integrated 
software, Kluwer Academic Publishers, pp. 177–178). Here, a positive number indicates an 
improvement in productivity and a decrease in efficient expenditure. 

Source: Oxera analysis of Fluvius data. 

                                                
79 For example, the Bundesnetzagentur uses a combination of DEA and SFA to estimate a Malmquist index 
that it uses to set the ongoing efficiency target for gas and electricity DSOs in Germany. See 
Bundesnetzagentur (2018), ‘BK4-18-056 Beschlusskammer 4’, November. 
80 VREG estimates the efficiency factor by estimating the trends in total industry expenditure for gas and 
electricity separately. This implicitly gives more weight to the cost reduction (as measured in percent per 
annum) achieved by DSOs with larger expenditure. For consistency, we also give more weight to the frontier 
shift observed by the DSOs with larger expenditure. 
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estimating the frontiers have between 9 and 11 TSOs included. The findings for 
which a caveat is formulated concern specifically the frontier shift, i.e. the relative 
changes of the four-dimensional output frontier in between years. Dependent only 
on a few peer units, partially shifting over time, the magnitude of the changes 
cannot be determined with precision.  

3.144 The static frontier is established by 23 TSO observations with complete data 
excluding 6 outliers. The data and the robustness of the results in DEA have been 
confirmed using several nonparametric methods and the documented sensitivity 
analyses.  

 
Table 3-3 Malmquist results in Sumicsid-CEER (2020, Table 3-4). 

 
 

3.145 The dynamic and static models are identical, but the number of units included in 
the runs are widely different (9-11 vs 23) excluding outliers, as well as the finding 
at hand (frontier shift vs individual operator score). Thus, the caveat for the dynamic 
results is as justified as the robustness of the static scores.   

 
 

3.5 Oxera summary [Oxera, ch 6] 

3.146 The final summary in Oxera (2020, Chapter 6) is not adding any new information. 

3.147 Oxera is concerned about the statement in the final report on future work directed 
towards refinements rather than model development. 

3.148 The recommendations in Oxera (2020, Appendix A2) contain a number of elements 
that Sumicsid can agree on as important for a regulatory benchmarking, although 
Sumicsid and Oxera may disagree on the implementation of some of these 
dimensions.    

 
 

X  DYNAMIC EFF IC IENCY RESULTS :  GAS TSO 9 (22 ) 

CEER AND SUMICSID | OPEN | 2020-04-14 

Outliers 
 The analyses of the raw data as well as the analysis of a series of model specifications, 

i.e. models with alternative costs drivers, suggest that one of the 29 TSOs almost always 
is an extreme outlier. This TSO has therefore been permanently removed from the 
reference set.  In addition, five others have been identified using the model specific 
outlier detection tests explained in section 1, making in all six TSOs frontier outliers. 

3.3 Efficiency scores 

 The efficiency scores are obtained using DEA on the final model described. The primary 
static result concerns the 2017 data for all except German TSOs, for which 2015 was 
used as benchmark year (costs were indexed to 2017).  

Final model efficiencies 
 Summary statistics for the efficiency scores in the final TCB18 model are shown in Table 

3-3 below. We see that the DEA model leads to average efficiencies of 79%, i.e. the 
model suggests that the gas TSOs on average can save 21% in benchmarked 
comparable Totex. 

Table 3-3 Efficiency scores in final model GAS, static 2017/2015 

 Mean Q1 Q2 (median) Q3 
Final DEA (2017)     0.793 0.631 0.881 1.000 
Peers (non-outliers) 4    
Outliers 6    

 

3.4 Dynamic results 

 Using the base model from the main report, we have calculated the Malmquist index 
and its components between 2013-2017 for the 11 TSOs for which dynamic data are 
available (thus excluding among others, all German TSOs). The formulae used are given 
in art 2.13 above. The results are summarized in Table 3-4 below.  

Table 3-4 Malmquist results (2013-2017), gas TSO. 

 
 

 
 The results consistently indicate technological regress with technical change TC values 

between 0.97 and 1.00. On average, it looks as if the cost frontier has moved up with 
1.7 % (=1-0.983) on average per year. However, note that the analysis is made on data 
adjusted for inflation using the harmonized index of consumer prices for overall goods, 
which is essentially the difference between the exogenous price increases (scarcity, 
market imperfection) and the general productivity increases (technology, process). Thus, 

Malmquist Efficiency change Technical change Number of DMUs
2013  -  2014 0.998 1.010 0.988 9
2014  -  2015 1.028 1.030 0.999 10
2015  -  2016 0.976 0.996 0.981 11
2016  -  2017 0.996 1.033 0.966 11

Mean 1.000 1.017 0.983
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Appendix A 

4. DEA and SFA with collinear data 

In Oxera (2020) a number of claims are made against the validity of a model when some 
regression coefficients are negative, stating that this would lead to potential errors in a DEA 
model, as well as a series of statements about the use of SFA instead of DEA to obtain robust 
results.    
 
The argumentation is fragmented although each point can be met theoretically and technically, 
it may leave the reader with the impression that the model is somehow deficient.  
 
In order to clearly illustrate that this is not the case, we provide here a structured simulation with 
a data structure that resembles the one in TCB18-GAS in terms of observations, model 
specification, collinearity and efficiency level.  The main difference here is that we simulate data 
with a given “true” efficiency that can be validated.  
 
As we will show, the data structure using a simple linear cost function (as in TCB18) will show 
some negative regression coefficients due to collinearity. This has no impact on the choice of 
parameters and the model results converges quickly in DEA. However, the model does not yield 
reliable results in SFA, even for a time series.  
 
We can therefore by construction dismiss the general claims in Oxera (2020): the regression 
signs for a larger model does not jeopardize the cost causality, it may occur for strictly positive 
cost functions, and it does not affect the correctness or convergence of the DEA scores.   
 

4.1 Objectives 

In this note we provide answers to the following relevant questions with respect to this type of 
model: 
1)      Is there a negative trade-off between outputs in the actual data used in the DEA model? If 

so, to which extent? What role does the correlation between outputs play? 
2)      Can a negative trade-off between outputs be a problem in DEA? In our specific DEA model, 

given that we use free (i.e., strong) disposability as an assumption? 
3)      Did the fact that some of the outputs are correlated lead to any noteworthy effects in the 

TCB18 DEA model?  
 
The approach chosen here is to simulate data material resembling the TCB18 data, but with a 
given true cost function and efficiency level. In this manner we can abstract from the endogeneity 
of demonstrating fit for purpose with properties of the data used for its estimation, drawing upon 
the disputed assumptions.    
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4.2 Negative coefficients in regression results 

The coefficients in a multiple regression model estimate the marginal change in the objective 
function value when changing an independent variable. In a general case and for a single 
variable, the sign indicates the direction of the change, such as the classification of (cost)-
increasing and (cost)-decreasing parameters.  
 
However, for larger models with a high level of collinearity among the parameters, the 
separation in sign no longer holds irrespective of the “true” causality among the parameters. In 
this case, one or several coefficients shift sign as the underlying independent variables co-vary 
and the nature of the causality of the parameters cannot be directly induced from the sign.  
 
We differ between two different characterizations: negative cost-causality and substitution effects 
(“negative trade-off effects”). In the first case, an output parameter yk is found to decrease the 
objective function (here: cost). This means that irrespective of the level of other parameters 
chosen, the cost function value decreases when yk is increased. We can therefore say that yk is 
not a “costdriver” but instead a favorable condition lowering the input.  
 
In the second case, two output parameters, say yi and yj have a relationship such that an 
increase/decrease in one tends to imply the opposite effect for the other. This can be found as 
a negative correlation between the two variables and different signs for the regression 
coefficients in a given model. In this case we observe a substitution pattern, potentially but not 
necessarily linked to a cost causality. This could be a spurious (random) correlation or a choice 
of output profile that is not linked to cost.   
 
The two cases are not equivalent to the case where an estimator simply has a negative sign 
because it corrects for another correlated factor already included in the model. E.g., in the 
electricity distribution models when including a general aggregate variable for decentralized 
power, adding a second parameter for a specific technology, say photovoltaics, comes out with 
a negative sign as the (cost increasing) factor is included in the first parameter and the second 
acts as correction (assuming that the impact is lower than the average in the aggregate factor).  
 
In TCB18-GAS, we have no examples of cost-decreasing output parameters, they are all both 
statistically and techno-economically validated as cost-driving outputs. However, we have two 
parameters that have negative signs in a regression model for cost, indicating a high collinearity.    
 
Thus, in order to model this specific dataset, we need to start with the strictly compliant positive 
cost function, still exhibiting the statistical characteristics of the TCB18-GAS sample. This will be 
done in the next section.  
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5. Simulated benchmarking data 

In this section we describe how to simulate a structured data set  with a number of units in a 
cross section, a large panel and four partially correlated outputs in a cost-function approach. 
Since we use simulated data, we change the names of the outputs not to confuse with the actual 
TCB18 model and its data, figuring here as a rail transport application. 

5.1 Setup 

We consider a set of 17 DMUs (observations or Decision Making Units, like TSOs in TCB18) over 
10 years in a balanced panel, so where the panel has 170 observations.  
 
There are five non-negative integer outputs; y_railkm, y_switches, y_tonkm, y_passengers, 
y_freightvol with mean and standard deviation as below. All DMUs share a common 
(unknown) cost function C(y): 
 
C = 100*y_railkm + 200*y_switches + 500*y_tonkm + 10*y_passengers + 10*y_freightvol + eps 
 
where eps is a stochastic error. Some descriptive statistics for the dataset are given in Table 5-1 
below. The observations for each DMU are stochastically independent, the distribution for cost 
and efficiency are stationary over time. However, the output parameters are internally 
correlated, see Table 5.2.   
 

Table 5-1 Input and output variables, means and standard deviation (n=170). 

Parameter mean St.dev 
xCost         9,186,971            5,308,641    
y_railkm              10,462                   5,801    
y_switches                9,927                   5,987    
y_tonkm              10,020                   5,720    
y_passengers                7,210                   4,371    
y_freightvol                2,131                   1,501    

 
 
 

Table 5-2 Correlation among inputs and outputs (full sample, n=170). 

 xCost y_railkm y_switches y_tonkm y_passengers y_freightvol 
xCost 1.0000 0.9124 0.8660 0.9351 0.7126 0.3437 
y_railkm 0.9124 1.0000 0.9122 0.9109 0.8268 0.3817 
y_switches 0.8660 0.9122 1.0000 0.8261 0.7657 0.3408 
y_tonkm 0.9351 0.9109 0.8261 1.0000 0.7617 0.3892 
y_passengers 0.7126 0.8268 0.7657 0.7617 1.0000 0.3345 
y_freightvol 0.3437 0.3817 0.3408 0.3892 0.3345 1.0000 

 
 
The true efficiency in the sample is deterministic, stationary and given as below, acting on the 
single input (xCost).  
 

xCost = C/Theta 
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Table 5-3 DMU and true efficiency (Theta). 

DMU Theta 
1 0.7026 
2 0.8772 
3 0.6100 
4 0.7763 
5 0.9486 
6 0.6289 
7 0.9326 
8 0.8780 
9 1.0000 
10 1.0000 
11 1.0000 
12 1.0000 
13 1.0000 
14 1.0000 
15 1.0000 
16 1.0000 
17 1.0000 
Mean 0.9032 

 
 
We have thus a sample of 10 x 17 yearly observations of a strictly linear cost function with 
positive coefficients and a known distribution for inefficiency with distribution similar to that of 
TCB18.   
 
  

5.2 Single factor regressions 

In Table 5-4 the single-parameter regression results for the full panel are presented for each 
parameter candidate. It is shown that the five parameters separately are significant with or 
without a constant to explain the dependent variable (xCost). However, the level of significance 
highly differs between the two prior (y_railkm and y_tonkm, both adj R2 > 0.83 ) versus the least 
significant (y_freightvol, adj R2 < 0.45).  
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Table 5-4 OLS results for single-parameter models with intercept, n=170. 
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The parameter plots towards cost are given in Figure  throughout Figure . The plots confirm the 
observations in Table 5-4, the parameters have visually a monotonic increasing trend with 
varying level of variability.  
 
The single-parameter results for the cross sections (single year) are provided below they show 
the same qualitative results with lower explanatory power.    
 

 
Figure 1 y_railkm vs xCost, n=170. 
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Figure 2 y_switches vs xCost, n = 170. 

 
 

 
Figure 3 y_tonkm vs xCost, n =170 
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Figure 4 y_passengers vs xCost, n =170. 

 
 

 
Figure 5 y_freightvol vs xCost, n = 170. 
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5.3 Model specification 

In a model specification effort, we combine the parameters in Table 5-5. As confirmed by an 
ANOVA or AIC analysis, adding up to four parameters increases the explanatory power of the 
model even when considering the model size.  
 
However, we note that the full model with five parameters (indeed the true model) does not 
come out as preferred, since the parameter y_freightvol loses its significance in any model with 
more than three parameters. It is therefore interesting to imagine that the model specification 
at this stage would consider halting at a model with four parameters.  
 
We also note that the coefficient for the parameter y_passengers shifts to negative (significant) 
in the preferred four-parameter model. This is due to the collinearity among the parameters. In 
Table 5-6 we show the Belsley condition index (CI) and the variance decomposition shares for 
the four parameters. A proposed cut-off level for the condition index is 30 (Belsley et al, 1980), 
which means that no parameter is a priori compromised. The variance decomposition 
proportions show how the variance in the determination of a specific coefficient for one variable 
relates to the presence of another parameter. For instance, the y_railkm parameter is virtually 
absorbing the significance of the constant when present (share 0.972) (which in fact is correct – 
there is no fixed term in the true model).   
 
As with regard to y_passenger, the parameter also has a strong variance interaction with 
y_railkm (not to be confounded with the correlation in Table 5-2). This means here that the joint 
determination of the two coefficients is not reliable, there is collinearity at hand. 
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Table 5-5 OLS results, 2 to 5 parameter models (n=170). 
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Table 5-6 Belsley condition index and variance decomposition shares, n=170. 

 
 
 
We investigate alternative 3-parameter models in Table 5-7 to explore whether the parameter 
y_passengers is necessary and useful. As seen, the coefficient for y_passengers is negative in all 
models, but not significant unless y_railkm is in the model. The preferred model using a criterion 
such as BIC or Mallow’s Cp is the full four-parameter model that we call Model 4.    
 
If the non-significant intercept is removed from the estimation of Model 4, the resulting model 
in Table 5-8 is obtained. As seen, the adjusted fit now attains a level of 97%, with coefficient 
values and signs similar to the ones with intercept. 
 
 

Constant y_railkm y_switches y_tonkm y_passengers
Constant 0.009 0.001 0.002 0.002 0.002
y_railkm 0.972 0.003 0.012 0.006 0.015
y_switches 0 0.003 0.31 0.004 0.691
y_tonkm 0.013 0.001 0.248 0.61 0.133
y_passengers 0.006 0.992 0.428 0.379 0.159

Condition index 1.00           4.92      9.92          10.85        20.75         
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Table 5-7 OLS results for alternative 3 and 4-parameter models, n=170. 
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Table 5-8 OLS result for model 4 (without intercept), n=170. 

 
 

5.4 DEA estimations 

In this section, we investigate questions (2) and (3) above, i.e., whether a DEA model based on 
collinear outputs would yield biased results. In the given example, we know the “true” score as 
the distribution is generated from a controlled and pre-defined cost function. A simple way of 
examining the bias issue is then to consider the ratio of the estimated DEA score to this true 
score, following Mehdiloo and Podinovski (2019). If no bias is at hand, the ratio is 100%, if the 
score is lower it means that the DEA model underestimates the efficiency leading to a bias.  
 
We now run two potential models in DEA framework (constant returns to scale, no outlier 
detection, no scaling), see Table 5-9 below. 
 
Model 4 is based on the OLS estimations above and could be a likely candidate for a model, 
deleting the non-significant parameter y_freightvol from the model. Model 5 is the true model 
for reference. 
 
  

Table 9:

Dependent variable:

xCost

y railkm 350.918
⇤⇤⇤

(96.517)

y switches 170.918
⇤⇤⇤

(60.937)

y tonkm 499.762
⇤⇤⇤

(62.698)

y passengers �171.843
⇤⇤

(71.900)

Observations 170

R
2

0.971

Adjusted R
2

0.970

Residual Std. Error 1,837,680.000 (df = 166)

F Statistic 1,373.247
⇤⇤⇤

(df = 4; 166)

Note: ⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01
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Table 5-9 Benchmarking models 4 and 5. 

Model 5 Model 4 

xCost xCost 
  
y_railkm y_railkm 
y_switches y_switches 
y_tonkm y_tonkm 
y_passengers y_passengers 
y_freightvol  

 
The DEA models are run in two modes: annually (“annual”) with as reference set only the units 
for the given year, and pooled (“panel”) with all units included in the reference set. The mean 
results are presented in Table 5-10 below along with the true efficiency scores.   
 
The results reveal that the mean efficiency scores are close to the true values, both for model 4 
and 5. Naturally, model 5 gives an equal or higher score compared to model 4 (with one output 
missing), but the difference is small. As expected, the panel estimates are very close to the true 
values with model 5 slightly higher than model 4.  
 
A closer look at the differences compared to the true values by DMU are given in Table 5-11. 
The color indicates the sign of the difference, green meaning that the DEA estimate is more 
generous than the true value. Here the results nicely illustrate the minimum extrapolation feature 
of DEA, the annual results for both model 4 and 5 are more conservative than the true values, 
up to 7.2% higher than the actual score. Note also that the models correctly identify all real 
peers within a 0.4% range.  
 
In terms of ranges for the individual DMU, the results are presented in Table 5-13.As before, 
the cautiousness is clearly shown with occurrences of full efficiency for inefficient units in some 
periods. The differences with respect to the true values are illustrated in Table 5-14. As seen, 
the correct model 5 never underestimates the real efficiency, but frequently overestimates it. 
Model 4 slightly penalizes the fully efficient peers, but with less than 0.5%. However, model 4 is 
also somewhat less generous in the overestimation than model 5, an effect of lower 
dimensionality and the variability of the 5th parameter. 
 
Thus, returning to the initial questions (2) and (3), we see in Table 5-12 that the bias from the 
full model in DEA is positive 2.6% and a smaller model gives 1.7%.  The bias is not linked to the 
model specification but to the effect of individual variations in cross-section estimations with 17 
DMU.  For a panel application, the bias is virtually eradicated (+0.5% for the full model and -
0.1% for the smaller model).   We may therefore safely conclude that not only DEA correctly 
identifies the peers for a model with collinear outputs, but even with a limited sample size it 
limits the bias by adding a cautious overestimation thanks to the minimum extrapolation 
principle, of 1.7%-2.6% for small cross-sections.  More complex assumptions for the production 
space, such as the hybrid disposable technology in Mehdiloo and Podinovski (2019), can 
therefore not offer any real improvement in the estimation, as the sample size effects are 
independent of the estimation technology.  
 



 RESPONSE TO THE OXERA REPORT ON TCB18-GTS 43(51) 
 

SUMICSID GROUP      
  

Table 5-10 True and estimated mean efficiency scores, models 4 and 5. 

 
 
 
 

TSO True Theta DEA(5, annual) DEA(5, panel) DEA(4, annual) DEA(4, panel)
1 0.946        0.964             0.951             0.964             0.950          

2 0.644        0.716             0.646             0.715             0.645          

3 0.710        0.763             0.710             0.732             0.708          

4 0.998        1.000             0.999             1.000             0.996          

5 0.911        0.944             0.922             0.938             0.918          

6 0.605        0.659             0.641             0.622             0.603          

7 0.823        0.883             0.826             0.859             0.821          

8 0.768        0.794             0.768             0.789             0.766          

9 1.000        1.000             1.000             0.999             0.996          

10 1.000        1.000             1.000             1.000             0.998          

11 1.000        1.000             1.000             1.000             0.997          

12 1.000        1.000             1.000             1.000             0.999          

13 1.000        1.000             1.000             0.999             0.998          

14 1.000        1.000             1.000             1.000             0.998          

15 1.000        1.000             1.000             0.999             0.998          

16 1.000        1.000             1.000             0.999             0.997          

17 1.000        1.000             1.000             1.000             0.998          

Mean 0.906        0.925              0.910             0.919              0.905           
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Table 5-11 Difference in mean (absolute values) from true efficiency. 

 
 
 

Differences
TSO DEA(5, annual) DEA(5, panel) DEA(4, annual) DEA(4, panel)
1 0.018 0.005 0.018 0.004

2 0.072 0.002 0.071 0.001

3 0.053 0 0.022 -0.002

4 0.002 0.001 0.002 -0.002

5 0.033 0.011 0.027 0.007

6 0.054 0.036 0.017 -0.002

7 0.06 0.003 0.036 -0.002

8 0.026 0 0.021 -0.002

9 0 0 -0.001 -0.004

10 0 0 0 -0.002

11 0 0 0 -0.003

12 0 0 0 -0.001

13 0 0 -0.001 -0.002

14 0 0 0 -0.002

15 0 0 -0.001 -0.002

16 0 0 -0.001 -0.003

17 0 0 0 -0.002

Mean 0.019 0.004 0.013 -0.001
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Table 5-12 Misspecifcation bias for DEA scores per DMU. 

 
 

Misspecification bias
TSO DEA(5, annual)DEA(5, panel)DEA(4, annual)DEA(4, panel)
1 1.019        1.005        1.019        1.004        

2 1.112        1.003        1.110        1.002        

3 1.075        1.000        1.031        0.997        

4 1.002        1.001        1.002        0.998        

5 1.036        1.012        1.030        1.008        

6 1.089        1.060        1.028        0.997        

7 1.073        1.004        1.044        0.998        

8 1.034        1.000        1.027        0.997        

9 1.000        1.000        0.999        0.996        

10 1.000        1.000        1.000        0.998        

11 1.000        1.000        1.000        0.997        

12 1.000        1.000        1.000        0.999        

13 1.000        1.000        0.999        0.998        

14 1.000        1.000        1.000        0.998        

15 1.000        1.000        0.999        0.998        

16 1.000        1.000        0.999        0.997        

17 1.000        1.000        1.000        0.998        

Mean 1.026        1.005        1.017        0.999        
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Table 5-13  Ranges (min-max) for annual DEA scores (10 years) per DMU. 

 
 
 
 

DEA(5, annual) DEA(4, annual)
TSO min max min max
1 0.947               1.000               0.947               1.000        

2 0.644               1.000               0.644               1.000        

3 0.710               0.980               0.710               0.818        

4 0.999               1.000               0.999               1.000        

5 0.911               1.000               0.911               1.000        

6 0.605               1.000               0.604               0.712        

7 0.823               1.000               0.820               1.000        

8 0.769               0.863               0.766               0.863        

9 1.000               1.000               0.997               1.000        

10 1.000               1.000               0.999               1.000        

11 1.000               1.000               0.998               1.000        

12 1.000               1.000               0.999               1.000        

13 1.000               1.000               0.998               1.000        

14 1.000               1.000               1.000               1.000        

15 1.000               1.000               0.998               1.000        

16 1.000               1.000               0.997               1.000        

17 1.000               1.000               0.998               1.000        
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Table 5-14 Differences from true values (max, min) for model 4 and 5 (annual). 

 
 

5.5 SFA estimations 

 
Stochastics Frontier Analysis (SFA, see Aigner et al., 1977) is a technique that estimates both 
general noise in the production or cost function, as well as a firm-specific inefficiency term. The 
primary assumption behind SFA is that the production function is stochastic, i.e. the outcome in 
terms of yield or cost depends on some randomness.  Although conceptually very appealing and 
indispensable when dealing with applications such as e.g. energy generation and  agriculture, 
SFA contrary to DEA relies on a series of technical assumption with regard to the distribution of 
the stochastic noise and the efficiency.  These assumptions are not easily verifiable (e.g. is the 
distribution of inefficiency distributed as a half-normal, gamma, beta or as a truncated normal?), 
nor harmless (direct impact on the level and distribution of scores).   
 
Most regulatory benchmarking relies on predominantly deterministic models as tariff setting and 
review should not depend on random effects or their estimation. For this reason, SFA is rarely 
used as primary model in regulation, but more often as cross-validation instrument.   
 
SFA is computationally considerably heavier than e.g. linear regression, forming a nonlinear 
optimization problem for which no closed form solution exists. Thus, iterative numerical 
procedures are used to estimate the maximum likelihood for the model. These models do not 
always converge, in particular for certain types of formulations. 
 
A model without any transformation of the input-output data is called a ‘level-model’. In DEA 
this corresponds to some strong properties since the reaction in e.g. cost for 
increasing/decreasing one unit of an output is determined by the data (the frontier) and not by 
any assumption.   

DEA(5, annual) DEA(4, annual)
TSO min max min max
1 0.001               0.054               0.001               0.054        

2 0.000               0.356               0.000 -              0.356        

3 0.000 -              0.270               0.000 -              0.108        

4 0.001               0.002               0.001               0.002        

5 0.000               0.089               0.000 -              0.089        

6 0.000 -              0.395               0.001 -              0.107        

7 0.000               0.177               0.003 -              0.177        

8 0.001               0.095               0.002 -              0.095        

9 0.000 -              -                    0.003 -              -             

10 -                    -                    0.001 -              -             

11 -                    -                    0.002 -              -             

12 -                    -                    0.001 -              -             

13 -                    -                    0.002 -              -             

14 -                    -                    -                    -             

15 -                    -                    0.002 -              -             

16 0.000 -              -                    0.003 -              -             

17 -                    -                    0.002 -              -             
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A model such as log(Totex) = log(Lines) + log(Power) is called a log-log model. Here the cost 
consequence of adding one unit of lines is defined by the log, although the data may say 
otherwise locally.  A more advanced model may have interaction terms such as log(Totex) = 
log(Lines) + log(Power) + log(Lines*Power), called a translog function. 
  
The SFA in general does not perform well with level data, it converges best with relatively small 
models on normalized data, e.g. log-linear formulations. Model 4 in levels (non-transformed 
data) can therefore not be used to estimate meaningful efficiencies in SFA. Obviously, this does 
not mean that the inefficiency disappears in SFA, it is a consequence of the high fit of the model 
not leaving enough variance to allow for the estimation of both an independent noise and half-
normal inefficiency term.  
 
A transformation to a log-model works in the Battese and Coelli (1992) implementation on R 
(frontier, version 1.1-8, by Henningsen) with the results below, compared to DEA and the true 
efficiency level. As seen in Figure 3 below, the DEA results quickly converge to the true (green) 
level whereas in this case the SFA results (model 4, log) converge to a lower level with a higher 
variance. The initial estimates for SFA are highly variable. Note that as the sample size decreases 
in SFA, the model cannot separate noise from inefficiency, leading to very high efficiency 
estimates, finally becoming non-significant.  It is this effect we note at the outset, where initially 
SFA is higher and then decreasing.  Had we tried with smaller sample sizes, then SFA would not 
have returned any significant estimates, which might have been misinterpreted as if there were 
no inefficiency in the data. 
 
Below we also present the results for SFA models for a cross-section and for the largest instance 
(pooled with n=170) with level and log formulations. Notice that y_passengers is significant and 
with a negative sign in the cross-section result but turning to non-significant in the full pooled 
instance for the log-formulation. In the level model, the sign for y_passengers switches to 
positive, but at the cost of the identification of inefficiency. Thus, as stated above, SFA is not an 
adequate and reliable estimation technology for all types of cost functions, including the level-
based function with collinear outputs as in TCB18 and the example.  
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Figure 3 Mean SFA, DEA and true efficiency scores vs sample size. 

 

SFA results (cross section 10, log, n=17) 
 
Error Components Frontier (see Battese & Coelli 1992) 
Inefficiency increases the endogenous variable (as in a cost function) 
 
final maximum likelihood estimates 
                        Estimate Std. Error  z value Pr(>|z|)     
(Intercept)            6.8274106  0.7670439   8.9009  < 2e-16 *** 
log(y_railkm + 1)      0.1553354  0.2966993   0.5235  0.60060     
log(y_tonkm + 1)       0.7223927  0.2637299   2.7391  0.00616 **  
log(y_switches + 1)    0.1847101  0.0727741   2.5381  0.01114 *   
log(y_passengers + 1) -0.0797643  0.0065106 -12.2514  < 2e-16 *** 
sigmaSq                0.0279558  0.0123505   2.2635  0.02360 *   
gamma                  1.0000000  0.0068761 145.4313  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
log likelihood value: 15.00525  
 
cross-sectional data 
total number of observations = 17  
 
mean efficiency: 0.8902327 
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SFA results (pooled, log, n=170) 
 
Error Components Frontier (see Battese & Coelli 1992) 
Inefficiency increases the endogenous variable (as in a cost function) 
 
final maximum likelihood estimates 
                       Estimate Std. Error z value  Pr(>|z|)     
(Intercept)           9.2343238  0.2488652 37.1057 < 2.2e-16 *** 
log(y_railkm + 1)     0.1909880  0.0376984  5.0662 4.058e-07 *** 
log(y_tonkm + 1)      0.3705953  0.0224085 16.5382 < 2.2e-16 *** 
log(y_switches + 1)   0.1351792  0.0202158  6.6868 2.281e-11 *** 
log(y_passengers + 1) 0.0070172  0.0141768  0.4950    0.6206     
sigmaSq               0.2428913  0.0328299  7.3985 1.378e-13 *** 
gamma                 0.9393264  0.0281304 33.3919 < 2.2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
log likelihood value: -31.64057  
 
cross-sectional data 
total number of observations = 170  
 
mean efficiency: 0.7290059 
 
 

SFA results (pooled, level, n=170) 
 
Error Components Frontier (see Battese & Coelli 1992) 
Inefficiency increases the endogenous variable (as in a cost function) 
The dependent variable is logged 
 
final maximum likelihood estimates 
               Estimate Std. Error    z value  Pr(>|z|)     
y_railkm     1.0587e+02 1.3331e+00 7.9418e+01 < 2.2e-16 *** 
y_switches   1.9792e+02 6.7594e-01 2.9280e+02 < 2.2e-16 *** 
y_tonkm      4.9625e+02 6.4158e-01 7.7349e+02 < 2.2e-16 *** 
y_passengers 6.6792e+00 1.0817e+00 6.1745e+00 6.636e-10 *** 
sigmaSq      8.4805e+12 1.0000e+00 8.4805e+12 < 2.2e-16 *** 
gamma        1.0000e+00 2.5161e-08 3.9744e+07 < 2.2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
log likelihood value: -2617.615  
 
cross-sectional data 
total number of observations = 170  
 
mean efficiency: NaN 
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6. Conclusions 

 
The simulation in this section is relevant to TCB18 for the following reasons: 

1. Model size and number or observations are similar 
2. The correlation among parameters is similar 
3. The variable decomposition factors and conditions index are similar 
4. The coefficients, signs and shift of sign are corresponding to model size. 
5. The single-variable results and plots are equivalent. 

 
For the given example we show for a random dataset with a random inefficiency that: 

1. The sign of a particular parameter does not affect the estimation in DEA or SFA. 
2. That a DEA estimation using parameters having negative coefficients in some OLS 

obtains correct results. 
3. That DEA estimates asymptotically converge to the true level of efficiency from above 

(cautiousness). 
4. That DEA estimates are relatively insensitive to the model specification for collinear 

parameters.  
5. That an SFA estimation for a standard linear untransformed model may not result in any 

useful estimation even for a controlled experiment 
6. That an SFA estimation for a loglinear model may result in scores that are lower than 

the true value and that convergence is slow.  
 
In this appendix we have provided answers to the following relevant questions: 

1) Is there negative trade-off between outputs in the actual data that we use in the DEA 
model? And if so, to what extent? What role does correlation between outputs play? 

No, there are no negative tradeoffs among the outputs. There is collinearity among the 
parameters leading to estimates of the coefficients and their signs that limit their direct 
use. The OLS model for average cost can only be used to predict the level of cost, not to 
evaluate the tradeoffs among the parameters. 

 
2) Can a negative trade-off between outputs be a problem in DEA? And in our specific 

DEA model, also given that we use free (i.e. strong) disposability as an assumption? 

In general, the use of an input in place of an output in a DEA model leads to erroneous 
results. However, this is not the case in TCB18 where all outputs are validated both 
statistically and techno-economically. See the example for a constructive proof. 

 
3) Did the fact that some of the outputs are to an extent correlated lead to any noteworthy 

effects in the TCB18 DEA model?  

No, DEA is very robust to correlated outputs, both in practice and in theory. However, 
SFA reacts poorly to both the collinearity and the type of model (level, linear).  

 
Thus, we can conclude the following: 

The estimation of cost functions for collinear parameters does not affect the overall 
precision of OLS predictions, nor of DEA estimates of efficiency. However, collinearity in 
the model specification limits the use of certain tools for model validation.  
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